Abstract Because quartz veins are common in fault zones exhumed from earthquake nucleation temperatures (150°C–350°C), quartz cementation may be an important mechanism of strength recovery between earthquakes. This interpretation requires that cementation occurs within a single interseismic period. We review slip‐related processes that have been argued to allow rapid quartz precipitation in faults, including: advection of silica‐saturated fluids, coseismic pore‐fluid pressure drops, frictional heating, dissolution‐precipitation creep, precipitation of amorphous phases, and variations in fluid and mineral‐surface chemistry. We assess the rate and magnitude of quartz growth that may result from each of the examined mechanisms. We find limitations to the kinetics and mass balance of silica precipitation that emphasize two end‐member regimes. First, the mechanisms we explore, given current kinetic constraints, cannot explain mesoscale fault‐fracture vein networks developing, even incrementally, on interseismic timescales. On the other hand, some mechanisms appear capable, isolated or in combination, of cementing micrometer‐to‐millimeter thick principal slip surfaces in days to years. This does not explain extensive vein networks in fault damage zones, but allows the involvement of quartz cements in fault healing. These end‐members lead us to hypothesize that high flux scenarios, although more important for voluminous hydrothermal mineralization, may be of subsidiary importance to local, diffusive mass transport in low fluid‐flux faults when discussing the mechanical implications of quartz cements. A renewed emphasis on the controls on quartz cementation rates in fault zones will, however, be integral to developing a more complete understanding of strength recovery following earthquake rupture.
more »
« less
Evolution of Fault-Zone Hydromechanical Properties in Response to Different Cementation Processes
Abstract Progressive cementation and sealing of fault-localized fractures impact crustal mass transport and the recovery of fault strength following slip events. We use discrete fracture network (DFN) models to examine how fracture sealing during end-member cementation mechanisms (i.e., reaction- versus transported-limited cementation) influences the partitioning of fluid flow through time. DfnWorks was used to generate randomized fracture networks parameterized with fracture orientation data compiled from field studies. Single-phase flow simulations were performed for each network over a series of timesteps, and network parameters were modified to reflect progressive fracture sealing consistent with either reaction- or transport-limited crystal growth. Results show that when fracture cementation is reaction-limited, fluid flow becomes progressively channelized into a smaller number of fractures with larger apertures. When fracture cementation is transport-limited, fluid flow experiences progressive dechannelization, becoming more homogeneously distributed throughout the fracture network. These behaviors are observed regardless of the DFN parameterization, suggesting that the effect is an intrinsic component of all fracture networks subjected to the end-member cementation mechanisms. These results have first-order implications for the spatial distribution of fluid flow in fractured rocks and recovery of permeability and strength during fault/fracture healing in the immediate aftermath of fault slip.
more »
« less
- Award ID(s):
- 1951985
- PAR ID:
- 10361987
- Publisher / Repository:
- DOI PREFIX: 10.2113
- Date Published:
- Journal Name:
- Lithosphere
- Volume:
- 2022
- Issue:
- 1
- ISSN:
- 1941-8264
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Fault‐damage zones comprise multiscale fracture networks that may slip dynamically and interact with the main fault during earthquake rupture. Using 3D dynamic rupture simulations and scale‐dependent fracture energy, we examine dynamic interactions of more than 800 intersecting multiscale fractures surrounding a listric fault, emulating a major listric fault and its damage zone. We investigate 10 distinct orientations of maximum horizontal stress, probing the conditions necessary for sustained slip within the fracture network or activating the main fault. Additionally, we assess the feasibility of nucleating dynamic rupture earthquake cascades from a distant fracture and investigate the sensitivity of fracture network cascading rupture to the effective normal stress level. We model either pure cascades or main fault rupture with limited off‐fault slip. We find that cascading ruptures within the fracture network are dynamically feasible under certain conditions, including: (a) the fracture energy scales with fracture and fault size, (b) favorable relative pre‐stress of fractures within the ambient stress field, and (c) close proximity of fractures. We find that cascading rupture within the fracture network discourages rupture on the main fault. Our simulations suggest that fractures with favorable relative pre‐stress, embedded within a fault damage zone, may lead to cascading earthquake rupture that shadows main fault slip. We find that such off‐fault events may reach moment magnitudes up toMw ≈ 5.5, comparable to magnitudes that can be otherwise hosted by the main fault. Our findings offer insights into physical processes governing cascading earthquake dynamic rupture within multiscale fracture networks.more » « less
-
Abstract Fault-zone fluids control effective normal stress and fault strength. While most earthquake models assume a fixed pore fluid pressure distribution, geologists have documented fault valving behavior, that is, cyclic changes in pressure and unsteady fluid migration along faults. Here we quantify fault valving through 2-D antiplane shear simulations of earthquake sequences on a strike-slip fault with rate-and-state friction, upward Darcy flow along a permeable fault zone, and permeability evolution. Fluid overpressure develops during the interseismic period, when healing/sealing reduces fault permeability, and is released after earthquakes enhance permeability. Coupling between fluid flow, permeability and pressure evolution, and slip produces fluid-driven aseismic slip near the base of the seismogenic zone and earthquake swarms within the seismogenic zone, as ascending fluids pressurize and weaken the fault. This model might explain observations of late interseismic fault unlocking, slow slip and creep transients, swarm seismicity, and rapid pressure/stress transmission in induced seismicity sequences.more » « less
-
Abstract The seismic moments observed for low‐frequency earthquakes (LFEs) vary over multiple orders of magnitude, even where the LFEs occur within families of similar events. Although this variability is typically interpreted to record a scale‐limited process at the LFE source, neither the slip per LFE nor the rupture area can be determined from seismological constraints. Here, we examine incrementally developed slickenfibers that have been proposed to record LFEs in exhumed subduction zones. These structures form through repeated, micron‐scale slip events across dilational irregularities in the fault plane, which are punctuated by cementation and sealing in the interstitial space. By statistically analyzing the geometry of inclusion trails delineating slip‐parallel mineral‐growth increments, we constrain the variability in slip per inferred LFE and test end‐member hypotheses regarding the controls on LFE moments. We find that that the slickenfibers exhibit characteristic slip increments, favoring a “slip‐limited” model that requires large variability in LFE rupture areas.more » « less
-
Abstract Understanding mechanistic causes of non‐Fickian transport in fractured media is important for many hydrogeologic processes and subsurface applications. This study elucidates the effects of dead‐end fractures on non‐Fickian transport in three‐dimensional (3D) fracture networks. Although dead‐end fractures have been identified as low‐velocity regions that could delay solute transport, the direct relation between dead‐end fractures and non‐Fickian transport has been elusive. We systematically generate a large number of 3D discrete fracture networks with different fracture length distributions and fracture densities. We then identify dead‐end fractures using a novel graph‐based method. The effect of dead‐end fractures on solute residence time maximizes at the critical fracture density of the percolation threshold, leading to strong late‐time tailing. As fracture density increases beyond the percolation threshold, the network connectivity increases, and dead‐end fractures diminish. Consequently, the increase in network connectivity leads to a reduction in the degree of late‐time tailing. We also show that dead‐end fractures can inform about main transport paths, such as the mean tortuosity of particle trajectories. This study advances our mechanistic understanding of solute transport in 3D fracture networks.more » « less
An official website of the United States government
