skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A See‐Saw in Pacific Subantarctic Mode Water Formation Driven by Atmospheric Modes
Abstract Subantarctic Mode Water (SAMW) in the Pacific forms in two distinct pools in the south central and southeast Pacific, which subduct into the ocean interior and impact global storage of heat and carbon. Wintertime thickness of the central and eastern SAMW pools vary predominantly out of phase with each other, by up to ±150 m between years, resulting in an interannual thickness see‐saw. The thickness in the eastern (central) pool is found to be strongly positively (negatively) correlated with both the Southern Annular Mode (SAM) and El Niño–Southern Oscillation (ENSO). The relative phases of the SAM and ENSO set the SAMW thickness, with in phase reinforcing modes in 2005–2008 and 2012–2017 driving strong differences between the pools. Between 2008 and 2012 out of phase atmospheric modes result in less coherent SAMW patterns. SAMW thickness is dominated by local formation driven by SAM and ENSO modulated wind stress and turbulent heat fluxes.  more » « less
Award ID(s):
1658001
PAR ID:
10362016
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
46
Issue:
22
ISSN:
0094-8276
Page Range / eLocation ID:
p. 13152-13160
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The deepest wintertime (Jul-Sep) mixed layers associated with Subantarctic Mode Water (SAMW) formation develop in the Indian and Pacific sectors of the Southern Ocean. In these two sectors the dominant interannual variability of both deep wintertime mixed layers and SAMW volume is a east-west dipole pattern in each basin. The variability of these dipoles are strongly correlated with the interannual variability of overlying winter quasi-stationary mean sea level pressure (MSLP) anomalies. Anomalously strong positive MSLP anomalies are found to result in the deepening of the wintertime mixed layers and an increase in the SAMW formation in the eastern parts of the dipoles in the Pacific and Indian sectors. These effects are due to enhanced cold southerly meridional winds, strengthened zonal winds and increased surface ocean heat loss. The opposite occurs in the western parts of the dipoles in these sectors. Conversely, strong negative MSLP anomalies result in shoaling (deepening) of the wintertime mixed layers and a decrease (increase) in SAMW formation in the eastern (western) regions. The MSLP variability of the Pacific and Indian basin anomalies are not always in phase, especially in years with a strong El Niño, resulting in different patterns of SAMW formation in the western vs. eastern parts of the Indian and Pacific sectors. Strong isopycnal depth and thickness anomalies develop in the SAMW density range in years with strong MSLP anomalies. When advected eastward, they act to precondition downstream SAMW formation in the subsequent winter. 
    more » « less
  2. Abstract The basic dynamics of the spatiotemporal diversity for El Niño–Southern Oscillation (ENSO) has been the subject of extensive research and, while several hypotheses have been proposed, remains elusive. One promising line of studies suggests that the observed eastern Pacific (EP) and central Pacific (CP) ENSO may originate from two coexisting leading ENSO modes. We show that the coexistence of unstable EP-like and CP-like modes in these studies arises from contaminated linear stability analysis due to unnoticed numerical scheme caveats. In this two-part study, we further investigate the dynamics of ENSO diversity within a Cane–Zebiak-type model. We first revisit the linear stability issue to demonstrate that only one ENSO-like linear leading mode exists under realistic climate conditions. This single leading ENSO mode can be linked to either a coupled recharge-oscillator (RO) mode favored by the thermocline feedback or a wave-oscillator (WO) mode favored by the zonal advective feedback at the weak air–sea coupling end. Strong competition between the RO and WO modes for their prominence in shaping this ENSO mode into a generalized RO mode makes it sensitive to moderate changes in these two key feedbacks. Modulations of climate conditions yield corresponding modulations in spatial pattern, amplitude, and period associated with this ENSO mode. However, the ENSO behavior undergoing this linear climate condition modulations alone does not seem consistent with the observed ENSO diversity, suggesting the inadequacy of linear dynamics in explaining ENSO diversity. A nonlinear mechanism for ENSO diversity will be proposed and discussed in Part II. 
    more » « less
  3. Abstract. Antarctic sea ice gradually increased from the late 1970s until 2016, when it experienced an abrupt decline. A number of mechanisms have been proposed for both the gradual increase and abrupt decline of Antarctic sea ice, but how each mechanism manifests spatially and temporally remains poorly understood. Here, we use a statistical method called low-frequency component analysis to analyze the spatial-temporal structure of observed Antarctic sea-ice concentration variability. The identified patterns reveal distinct modes of low-frequency sea ice variability. The leading mode, which accounts for the large-scale, gradual expansion of sea ice, is associated with the Interdecadal Pacific Oscillation and resembles the observed sea-surface temperature trend pattern that climate models have trouble reproducing. The second mode is associated with the central Pacific El Niño–Southern Oscillation (ENSO) and the Southern Annular Mode, and accounts for most of the sea ice variability in the Ross Sea. The third mode is associated with the eastern Pacific ENSO and Amundsen Sea Low, and accounts for most of the pan-Antarctic sea-ice variability and almost all of the sea ice variability in the Weddell Sea. This mode is associated with periods of abrupt Antarctic sea-ice decline and is related to a weakening of the circumpolar westerlies, which favors surface warming through a shoaling of the ocean mixed layer and decreased northward Ekman heat convergence. Broadly, these results suggest that climate model biases in long-term Antarctic sea-ice and global sea-surface temperature trends are related to each other and that eastern Pacific ENSO variability causes abrupt sea ice changes. 
    more » « less
  4. Abstract. Antarctic sea ice has exhibited significant variability over the satellite record, including a period of prolonged and gradual expansion, as well as a period of sudden decline. A number of mechanisms have been proposed to explain this variability, but how each mechanism manifests spatially and temporally remains poorly understood. Here, we use a statistical method called low-frequency component analysis to analyze the spatiotemporal structure of observed Antarctic sea ice concentration variability. The identified patterns reveal distinct modes of low-frequency sea ice variability. The leading mode, which accounts for the large-scale, gradual expansion of sea ice, is associated with the Interdecadal Pacific Oscillation and resembles the observed sea surface temperature trend pattern that climate models have trouble reproducing. The second mode is associated with the central Pacific El Niño–Southern Oscillation (ENSO) and the Southern Annular Mode and accounts for most of the sea ice variability in the Ross Sea. The third mode is associated with the eastern Pacific ENSO and Amundsen Sea Low and accounts for most of the pan-Antarctic sea ice variability and almost all of the sea ice variability in the Weddell Sea. The third mode is also related to periods of abrupt Antarctic sea ice decline that are associated with a weakening of the circumpolar westerlies, which favors surface warming through a shoaling of the ocean mixed layer and decreased northward Ekman heat transport. Broadly, these results suggest that climate model biases in long-term Antarctic sea ice and large-scale sea surface temperature trends are related to each other and that eastern Pacific ENSO variability is a key ingredient for abrupt Antarctic sea ice changes. 
    more » « less
  5. Abstract The relationship between the equatorial Pacific warm water volume (WWV) and El Niño–Southern Oscillation (ENSO) sea surface temperature (SST) has varied considerably on decadal timescales. These changes are strongly related to the occurrence frequency of central Pacific (CP) ENSO events. While both eastern Pacific (EP) and CP ENSO events show clear signatures of WWV recharge/discharge, their phase‐lag relationships between WWV and Niño3.4 SST are different. The WWV usually leads the Niño3.4 SST by two to three seasons during EP ENSO, while the lead time is reduced to one season during CP ENSO. The different phase‐lag relationships can be explained by distinct periodicities of the two ENSO types. Hence, ENSO regime changes associated with decadal predominance of either EP or CP ENSO events can give rise to decadal variations in the statistical WWV‐ENSO SST relationship. We emphasize the importance of identifying these different ENSO types and potentially different ENSO regimes to assess ENSO predictability. 
    more » « less