Abstract Recent micro-CT scans have demonstrated a much larger magnetic nanoparticle distribution volume in tumors after localized heating than those without heating, suggesting possible heating-induced nanoparticle migration. In this study, a theoretical simulation was performed on tumors injected with magnetic nanoparticles to evaluate the extent to which the nanoparticle redistribution affects the temperature elevation and thermal dosage required to cause permanent thermal damage to PC3 tumors. 0.1 cc of a commercially available ferrofluid containing magnetic nanoparticles was injected directly to the center of PC3 tumors. The control group consisted of four PC3 tumors resected after the intratumoral injection, while the experimental group consisted of another four PC3 tumors injected with ferrofluid and resected after 25 min of local heating. The micro-CT scan generated tumor model was attached to a mouse body model. The blood perfusion rates in the mouse body and PC3 tumor were first extracted based on the experimental data of average mouse surface temperatures using an infrared camera. A previously determined relationship between nanoparticle concentration and nanoparticle-induced volumetric heat generation rate was implemented into the theoretical simulation. Simulation results showed that the average steady-state temperature elevation in the tumors of the control group is higher than that in the experimental group where the nanoparticles are more spreading from the tumor center to the tumor periphery (control group: 70.6±4.7 °C versus experimental group: 69.2±2.6 °C). Further, we assessed heating time needed to cause permanent thermal damage to the entire tumor, based on the nanoparticle distribution in each tumor. The more spreading of nanoparticles to tumor periphery in the experimental group resulted in a much longer heating time than that in the control group. The modified thermal damage model by Dr. John Pearce led to almost the same temperature elevation distribution; however, the required heating time was at least 24% shorter than that using the traditional Arrhenius integral, despite the initial time delay. The results from this study suggest that in future simulation, the heating time needed when considering dynamic nanoparticle migration during heating is probably between 19 and 29 min based on the Pearce model. In conclusion, the study demonstrates the importance of including dynamic nanoparticle spreading during heating and accurate thermal damage model into theoretical simulation of temperature elevations in tumors to determine thermal dosage needed in magnetic nanoparticle hyperthermia design. 
                        more » 
                        « less   
                    
                            
                            Application of magnetically actuated self-clearing catheter for rapid in situ blood clot clearance in hemorrhagic stroke treatment
                        
                    
    
            Abstract Maintaining the patency of indwelling drainage devices is critical in preventing further complications following an intraventricular hemorrhage (IVH) and other chronic disease management. Surgeons often use drainage devices to remove blood and cerebrospinal fluid but these catheters frequently become occluded with hematoma. Using an implantable magnetic microactuator, we created a self-clearing catheter that can generate large enough forces to break down obstructive blood clots by applying time-varying magnetic fields. In a blood-circulating model, our self-clearing catheters demonstrated a > 7x longer functionality than traditional catheters (211 vs. 27 min) and maintained a low pressure for longer periods (239 vs. 79 min). Using a porcine IVH model, the self-clearing catheters showed a greater survival rate than control catheters (86% vs. 0%) over the course of 6 weeks. The treated animals also had significantly smaller ventricle sizes 1 week after implantation compared to the control animals with traditional catheters. Our results suggest that these magnetic microactuator-embedded smart catheters can expedite the removal of blood from the ventricles and potentially improve the outcomes of critical patients suffering from often deadly IVH. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1944480
- PAR ID:
- 10362017
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The development of inexpensive and portable point‐of‐care devices for measuring nutritional physiological parameters from blood (e.g., glucose, ketones) has accelerated our understanding and assessment of real‐time variation in human health, but these have infrequently been tested or implemented in wild animals, especially in relation to other key biological or fitness‐related traits. Here we used point‐of‐care devices to measure blood levels of glucose, ketones, uric acid, and triglycerides in free‐ranging house finches (Haemorhous mexicanus)—a common songbird in North America that has been well‐studied in the context of urbanization, nutrition, health, and sexual selection—during winter and examined (1) repeatability of these methods for evaluating blood levels in these wild passerines, (2) intercorrelations among these measurements within individuals, (3) how blood nutritional‐physiology metrics related to a bird's body condition, habitat of origin (urban vs. suburban), poxvirus infection, and sex; and (4) if the expression of male sexually selected plumage coloration was linked to any of the nutritional‐physiological metrics. All blood‐nutritional parameters were repeatable. Also, there was significant positive covariation between concentrations of circulating triglycerides and glucose and triglycerides and uric acid. Urban finches had higher blood glucose concentrations than suburban finches, and pox‐infected individuals had lower blood triglyceride concentrations than uninfected ones. Last, redder males had higher blood glucose, but lower uric acid levels. These results demonstrate that point‐of‐care devices can be useful, inexpensive ways of measuring real‐time variation in the nutritional physiology of wild birds.more » « less
- 
            Abstract We evaluated miRNA and mRNA expression differences in head tissues between avid-biting vs. reluctant-biting Aedes albopictus (Skuse) females from a single population over a 20-min timescale. We found no differences in miRNA expression between avid vs. reluctant biters, indicating that translational modulation of blood-feeding behavior occurs on a longer timescale than mRNA transcription. In contrast, we detected 19 differentially expressed mRNAs. Of the 19 differentially expressed genes at the mRNA level between avid-biting vs. reluctant-biting A. albopictus, 9 are implicated in olfaction, consistent with the well-documented role of olfaction in mosquito host-seeking. Additionally, several of the genes that we identified as differentially expressed in association with phenotypic variation in biting behavior share similar functions with or are inferred orthologues of, genes associated with evolutionary variation in biting behaviors of Wyeomyia smithii (Coq.) and Culex pipiens (Lin.). A future goal is to determine whether these genes are involved in the evolutionary transition from a biting to a non-biting life history.more » « less
- 
            Electrolyte-gate transistors are a powerful platform for control of material properties, spanning semiconducting behavior, insulator-metal transitions, superconductivity, magnetism, optical properties, etc. When applied to magnetic materials, for example, electrolyte-gate devices are promising for magnetoionics, wherein voltage-driven ionic motion enables low-power control of magnetic order and properties. The mechanisms of electrolyte gating with ionic liquids and gels vary from predominantly electrostatic to entirely electrochemical, however, sometimes even in single material families, for reasons that remain unclear. In this Perspective, we compare literature ionic liquid and ion gel gating data on two rather different material classes—perovskite oxides and pyrite-structure sulfides—seeking to understand which material factors dictate the electrostatic vs electrochemical gate response. From these comparisons, we argue that the ambient-temperature anion vacancy diffusion coefficient (not the vacancy formation energy) is a critical factor controlling electrostatic vs electrochemical mechanisms in electrolyte gating of these materials. We, in fact, suggest that the diffusivity of lowest-formation-energy defects may often dictate the electrostatic vs electrochemical response in electrolyte-gated inorganic materials, thereby advancing a concrete hypothesis for further exploration in a broader range of materials.more » « less
- 
            Three-dimensional (3D) dried blood spheroids form when whole blood is deposited onto hydrophobic paper and allowed to dry in ambient air. The adsorbed 3D dried blood spheroid present at the surface of the hydrophobic paper is observed to offer enhanced stability for labile analytes that would otherwise degrade if stored in the traditional two-dimensional (2D) dried blood spot method. The protective mechanism for the dried blood spheroid microsampling platform was studied using scanning electron microscopy (SEM), which revealed the presence of a passivation thin film at the surface of the spheroid that serves to stabilize the interior of the spheroid against environmental stressors. Through time-course experiments based on sequential SEM analyses, we discovered that the surface protective thin film forms through the self-assembly of red blood cells following the evaporation of water from the blood sample. The bridging mechanism of red blood cell aggregation is evident in our experiments, which leads to the distinct rouleau conformation of stacked red blood cells in less than 60 min after creating the blood spheroid. The stack of self-assembled red blood cells at the exterior of the spheroid subsequently lyse to afford the surface protective layer detected to be approximately 30 μm in thickness after three weeks of storage in ambient air. We applied this mechanistic insight to plasma and serum to enhance stability when stored under ambient conditions. In addition to physical characterization of these thin biofilms, we also used paper spray (PS) mass spectrometry (MS) to examine chemical changes that occur in the stored biofluid. For example, we present stability data for cocaine spiked in whole blood, plasma, and serum when stored under ambient conditions on hydrophilic and hydrophobic paper substrates.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
