skip to main content


Title: Cyanobacterial weathering in warming periglacial sediments: Implications for nutrient cycling and potential biosignatures
Abstract

The cryosphere hosts a widespread microbial community, yet microbial influences on silicate weathering have been historically neglected in cold‐arid deserts. Here we investigate bioweathering by a cold‐tolerant cyanobacteria (Leptolyngbya glacialis) via laboratory experiments using glaciofluvial drift sediments at 12°C, analogous to predicted future permafrost surface temperatures. Our results show threefold enhanced Si weathering rates in pre‐weathered, mixed‐lithology Antarctic biotic reactors compared to abiotic controls, indicating the significant influence of microbial life on weathering. Although biotic and abiotic weathering rates are similar in Icelandic sediments, neo‐formed clay and Fe‐(oxy)hydroxide minerals observed in association with biofilms in biotic reactors are common on Icelandic mafic minerals, similar to features observed in unprocessed Antarctic drifts. This suggests that microbes enhance weathering in systems where they must scavenge for nutrients that are not easily liberated via abiotic pathways; potential biosignatures may form in nutrient‐rich systems as well. In both sediment types we also observed up to fourfold higher bicarbonate concentrations in biotic reactors relative to abiotic reactors, indicating that, as warming occurs, psychrotolerant biota will enhance bicarbonate flux to the oceans, thus stimulating carbonate deposition and providing a negative feedback to increasing atmospheric CO2.

 
more » « less
Award ID(s):
1543344
NSF-PAR ID:
10362039
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Permafrost and Periglacial Processes
Volume:
33
Issue:
1
ISSN:
1045-6740
Page Range / eLocation ID:
p. 63-77
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Snow algae can form large-scale blooms across the snowpack surface and near-surface environments. These pigmented blooms can decrease snow albedo and increase local melt rates, and they may impact the global heat budget and water cycle. Yet, the underlying causes for the geospatial occurrence of these blooms remain unconstrained. One possible factor contributing to snow algal blooms is the presence of mineral dust as a micronutrient source. We investigated the bioavailability of iron (Fe)-bearing minerals, including forsterite (Fo 90 , Mg 1.8 Fe 0.2 SiO 4 ), goethite, smectite, and pyrite as Fe sources for a Chloromonas brevispina -bacterial coculture through laboratory-based experimentation. Fo 90 was capable of stimulating snow algal growth and increased the algal growth rate in otherwise Fe-depleted cocultures. Fo 90 -bearing systems also exhibited a decrease in the ratio of bacteria to algae compared to those of Fe-depleted conditions, suggesting a shift in microbial community structure. The C. brevispina coculture also increased the rate of Fo 90 dissolution relative to that of an abiotic control. Analysis of 16S rRNA genes in the coculture identified Gammaproteobacteria , Betaproteobacteria , and Sphingobacteria , all of which are commonly found in snow and ice environments. Archaea were not detected. Collimonas and Pseudomonas , which are known to enhance mineral weathering rates, comprised two of the top eight (>1%) operational taxonomic units (OTUs). These data provide unequivocal evidence that mineral dust can support elevated snow algal growth under otherwise Fe-depleted growth conditions and that snow algal microbial communities can enhance mineral dissolution under these conditions. IMPORTANCE Fe, a key micronutrient for photosynthetic growth, is necessary to support the formation of high-density snow algal blooms. The laboratory experiments described herein allow for a systematic investigation of the interactions of snow algae, bacteria, and minerals and their ability to mobilize and uptake mineral-bound Fe. Results provide unequivocal and comprehensive evidence that mineral-bound Fe in Fe-bearing Fo 90 was bioavailable to Chloromonas brevispina snow algae within an algal-bacterial coculture. This evidence includes (i) an observed increase in snow algal density and growth rate, (ii) decreased ratios of bacteria to algae in Fo 90 -containing cultures relative to those of cultures grown under similarly Fe-depleted conditions with no mineral-bound Fe present, and (iii) increased Fo 90 dissolution rates in the presence of algal-bacterial cocultures relative to those of abiotic mineral controls. These results have important implications for the role of mineral dust in supplying micronutrients to the snow microbiome, which may help support dense snow algal blooms capable of lowering snow albedo and increasing snow melt rates on regional, and possibly global, scales. 
    more » « less
  2. Abstract

    Biogeochemical sulfur cycling in sulfidic karst systems is largely driven by abiotic and biological sulfide oxidation, but the fate of elemental sulfur (S0) that accumulates in these systems is not well understood. The Frasassi Cave system (Italy) is intersected by a sulfidic aquifer that mixes with small quantities of oxygen‐rich meteoric water, creating Proterozoic‐like conditions and supporting a prolific ecosystem driven by sulfur‐based chemolithoautotrophy. To better understand the cycling of S0in this environment, we examined the geochemistry and microbiology of sediments underlying widespread sulfide‐oxidizing mats dominated byBeggiatoa. Sediment populations were dominated by uncultivated relatives of sulfur cycling chemolithoautotrophs related toSulfurovum,Halothiobacillus,Thiofaba,Thiovirga,Thiobacillus, andDesulfocapsa, as well as diverse uncultivated anaerobic heterotrophs affiliated withBacteroidota, Anaerolineaceae, Lentimicrobiaceae, and Prolixibacteraceae.DesulfocapsaandSulfurovumpopulations accounted for 12%–26% of sediment 16S rRNA amplicon sequences and were closely related to isolates which carry out autotrophic S0disproportionation in pure culture. Gibbs energy (∆Gr) calculations revealed that S0disproportionation under in situ conditions is energy yielding. Microsensor profiles through the mat‐sediment interface showed thatBeggiatoamats consume dissolved sulfide and oxygen, but a net increase in acidity was only observed in the sediments below. Together, these findings suggest that disproportionation is an important sink for S0generated by microbial sulfide oxidation in this oxygen‐limited system and may contribute to the weathering of carbonate rocks and sediments in sulfur‐rich environments.

     
    more » « less
  3. Abstract

    Ecosystem-bedrock interactions power the biogeochemical cycles of Earth’s shallow crust, supporting life, stimulating substrate transformation, and spurring evolutionary innovation. While oxidative processes have dominated half of terrestrial history, the relative contribution of the biosphere and its chemical fingerprints on Earth’s developing regolith are still poorly constrained. Here, we report results from a two-year incipient weathering experiment. We found that the mass release and compartmentalization of major elements during weathering of granite, rhyolite, schist and basalt was rock-specific and regulated by ecosystem components. A tight interplay between physiological needs of different biota, mineral dissolution rates, and substrate nutrient availability resulted in intricate elemental distribution patterns. Biota accelerated CO2mineralization over abiotic controls as ecosystem complexity increased, and significantly modified the stoichiometry of mobilized elements. Microbial and fungal components inhibited element leaching (23.4% and 7%), while plants increased leaching and biomass retention by 63.4%. All biota left comparable biosignatures in the dissolved weathering products. Nevertheless, the magnitude and allocation of weathered fractions under abiotic and biotic treatments provide quantitative evidence for the role of major biosphere components in the evolution of upper continental crust, presenting critical information for large-scale biogeochemical models and for the search for stablein situbiosignatures beyond Earth.

     
    more » « less
  4. Abstract

    Elevations >2,000 m represent consistently harsh environments for small endotherms because of abiotic stressors such as cold temperatures and hypoxia.

    These environmental stressors may limit the ability of populations living at these elevations to respond to biotic selection pressures—such as parasites or pathogens—that in other environmental contexts would impose only minimal energetic‐ and fitness‐related costs.

    We studied deer mice (Peromyscus maniculatus rufinus) living along two elevational transects (2,300–4,400 m) in the Colorado Rockies and found that infection prevalence by botfly larvae (Cuterebridae) declined at higher elevations. We found no evidence of infections at elevations >2,400 m, but that 33.6% of all deer mice, and 52.2% of adults, were infected at elevations <2,400 m.

    Botfly infections were associated with reductions in haematocrit levels of 23%, haemoglobin concentrations of 27% and cold‐induced VO2maxmeasures of 19% compared to uninfected individuals. In turn, these reductions in aerobic performance appeared to influence fitness, as infected individuals exhibited 19‐34% lower daily survival rates.

    In contrast to studies at lower elevations, we found evidence indicating that botfly infections influence the aerobic capabilities and fitness of deer mice living at elevations between 2,000 and 2,400 m. Our results therefore suggest that the interaction between botflies and small rodents is likely highly context‐dependent and that, more generally, high‐elevation populations may be susceptible to additional biotic selection pressures.

    Aplain language summaryis available for this article.

     
    more » « less
  5. Abstract

    Previous studies have documented a weathering‐limited regime in the upper reaches of the Ganges River Basin. Chemical weathering and element mobility at six sites in the lower reaches of the Ganges‐Brahmaputra tidal floodplain of southwest Bangladesh were investigated by comparing compositions of rice paddy soils, precursor tidal channel sediments, surface waters, and extract solutions, which represent the soluble fraction of solids. Little spatial variation in water and solid compositions is observed in each season, indicating similar processes are acting to transport elements across this region. Roughly one to several decades after deposition, rice paddy soils are not significantly different in mineralogy or composition from precursor tidal channel sediments, and both are similar to the composition of average upper continental crust. Soil and sediments contain mostly stable, cation depleted minerals, and coexisting waters are saturated in those minerals. There is no detectable change in composition of tidal channel water between upstream and downstream sites. Together, these observations indicate the dominance of weathered material and weak chemical weathering in the tidal floodplain, consistent with a transport‐limited regime. Multiple lines of evidence indicate a lack of exchange equilibrium between surface waters and coexisting solids, which may be a common feature in tidal river deltas where transport‐limited regimes likely dominate.

     
    more » « less