Abstract We present time‐correlated ultra‐high‐speed video camera and electromagnetic field measurements of the attachment processes in a natural negative cloud‐to‐ground stroke. The video camera frame exposure time and pixel resolution were 740 ns and 0.91 m/pixel, respectively. The common streamer zone (CSZ) was first observed 2.52 µs preceding the first frame showing the return stroke (RS) in progress, when the upward and downward leader‐tips were 9.8 m apart. In the next frame, the two leaders were observed to have propagated toward each other within the CSZ, with their tips being 0.91 m apart. Our observations show with unprecedented precision/clarity that (a) the slow front in the field waveform is associated with the CSZ, and (b) the “proper” start of the RS is marked by the onset of the fast transition in the field waveform which occurs at the completion of the attachment processes (when the upward and downward leaders have merged). 
                        more » 
                        « less   
                    
                            
                            Insights on Space‐Leader Characteristics and Evolution in Natural Negative Cloud‐to‐Ground Lightning
                        
                    
    
            Abstract We present sub‐microsecond‐scale, high‐speed video camera observations of three negative stepped leaders in cloud‐to‐ground flashes with return‐stroke peak currents (estimated by the U.S. National Lightning Detection Network) of −17, −104, and −228 kA. The camera frame exposure times for these observations were 1.8, 1.0, and 0.74 µs, respectively. The 0.74 µs exposure time is the shortest reported to date. We observed the temporal and spatial evolution of space leaders from their inception to their attachment to the pre‐existing leader channel (PELC). For stepped leaders that led to return strokes having higher peak currents, the space leaders appear to have incepted at farther median two‐dimensional distances from their respective PELC‐attachment points. These median distances were 6.1, 16.6, and 17.6 m, respectively, for the three strokes. Our observations indicate that space leader characteristics are likely influenced by stepped‐leader line‐charge‐density, which is expected to be higher in strokes with higher return‐stroke peak currents. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1934066
- PAR ID:
- 10362170
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 48
- Issue:
- 16
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract This study analyzes the two‐dimensional speed profiles of 107 stepped leaders and 93 dart leaders recorded by high‐speed cameras in Utah (USA), together with data from lightning location system. The results shows that the final and average speed of the stepped leader has a very strong (R = 0.82) and strong (R = 0.71) correlation with the peak current of the return stroke. It also shows that 91% of the stepped leaders increased their speed near the ground (average increase of 69%). The same analysis for dart leaders shows weak correlation with the peak current of the prospective return stroke (R = 0.39 to average speed andR = 0.28 to final speed). This paper briefly discusses why peak current is better correlated with final speed than with the average speed, and why stepped leaders exhibit a significant correlation, while dart leaders do not.more » « less
- 
            Leaders of subsequent strokes in negative cloud-to-ground lightning are known to produce X-ray/gamma-ray emissions detectable at distances of a few kilometers or less from the lightning channel. These leaders usually develop in decayed but still warm channels of preceding strokes. We computed electric field waveforms at different points along the path of subsequent leader as those points are traversed by the leader tip. For a typical subsequent leader, the electric field peak is a few MV/m, which is sufficient for production of energetic radiation in a warm (reduced air density) channel. We examined the dependence of electric field peak on the leader model input parameters, including the prospective return-stroke peak current (a proxy for the leader tip potential) and leader propagation speed, and compared model predictions with measurements.more » « less
- 
            null (Ed.)Abstract Time-correlated high-speed video and electric field change data for 139 natural, negative cloud-to-ground (CG)-lightning flashes reveal 615 return strokes (RSs) and 29 upward-illumination (UI)-type strokes. Among 121 multi-stroke flashes, 56% visibly connected to more than one ground location for either a RS or UI-type stroke. The number of separate ground-stroke connection locations per CG flash averaged 1.74, with maximum 6. This study examines the 88 subsequent strokes that involved a subsequent stepped leader (SSL), either reaching ground or intercepting a former leader to ground, in 61 flashes. Two basic modes by which these SSLs begin are described and are termed dart - then - stepped leaders herein. One inception mode occurs when a dart leader deflects from the prior main channel and begins propagating as a stepped leader to ground. In these ‘divert’ mode cases, the relevant interstroke time from the prior RS in the channel to the SSL inception from that path is long, ranging from 105 to 204 ms in four visible cases. The alternative mode of SSL inception occurs when a dart leader reaches the end of a prior unsuccessful branch—of an earlier competing dart leader, stepped leader, or initial leader—then begins advancing as a stepped leader toward ground. In this more common ‘branch’ mode (85% of visible cases), there may be no portion of the subsequent RS channel that is shared with a prior RS channel. These two inception modes, and variations among them, can occur in different subsequent strokes of the same flash.more » « less
- 
            Abstract The dissonant development of positive and negative lightning leaders is a central question in atmospheric electricity. It is also the likely root cause of other reported asymmetries between positive and negative lightning flashes, including the ones regarding: stroke multiplicity, recoil activity, leader velocities, and emission of energetic radiation. In an effort to contrast lightning leaders of different polarities, we highlight the staggering differences between two rocket‐triggered lightning flashes. The flash beginning with upward positive leaders exhibits an initial continuous current stage followed by multiple sequences of dart leaders and return strokes. On the other, in its opposite‐polarity counterpart, the upward development of negative leaders is by itself the entire flash. As a result, the flash with negative leaders is faster, briefer, transfers less charge to the ground, has lower currents, and smaller spatial extent. We conclude by presenting a discussion on the three fundamental leader propagation modes.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
