When the electric field below a thunderstorm or other electrified cloud is around 10 kV/m, it is sometimes possible to initiate (“trigger”) an upward‐propagating lightning‐leader by launching a rocket that uncoils a wire from the ground. The triggered leader propagates upward from the tip of the wire lifted by the rocket. When the channel is hot enough, a flash is visible. Triggering is common when the leader carries positive charge, but not when it carries negative charge. This article is about four flashes consisting of triggered negative leaders that branched into low‐altitude regions of positive cloud charge over Langmuir Laboratory in central New Mexico. Measurements of current and the locations of leader channels are available for three of the four flashes. Some current pulses at the ground for Flash 2 originated at negative leader steps more than 3 km away, which is a greater distance than has been reported from video measurements. Flashes 3 and 4 propagated only into thunderstorm lower positive charge, and the average lightning‐charge densities inside the volumes occupied by these two flashes are remarkably close. Our best estimate of density for Flashes 3 and 4 lies between −4.2 and −1.8 C/km3, which is compatible with the large spread in cloud‐charge densities derived from instruments carried on airplanes or balloons into low positive regions in thunderstorms.
The dissonant development of positive and negative lightning leaders is a central question in atmospheric electricity. It is also the likely root cause of other reported asymmetries between positive and negative lightning flashes, including the ones regarding: stroke multiplicity, recoil activity, leader velocities, and emission of energetic radiation. In an effort to contrast lightning leaders of different polarities, we highlight the staggering differences between two rocket‐triggered lightning flashes. The flash beginning with upward positive leaders exhibits an initial continuous current stage followed by multiple sequences of dart leaders and return strokes. On the other, in its opposite‐polarity counterpart, the upward development of negative leaders is by itself the entire flash. As a result, the flash with negative leaders is faster, briefer, transfers less charge to the ground, has lower currents, and smaller spatial extent. We conclude by presenting a discussion on the three fundamental leader propagation modes.
more » « less- NSF-PAR ID:
- 10462120
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 50
- Issue:
- 17
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Recent measurements of narrow bipolar lightning events (NBEs) by very high frequency (VHF) radio interferometer have resolved the dynamic development of this special lightning process with submicrosecond time resolution, and showed that the fast positive breakdown (FPB) process is responsible for initiating at least some lightning flashes. In this study, with a newly built and deployed VHF interferometer system, we analyzed 31 intracloud lightning flash initiation events during three thunderstorms at short range from the interferometer. These events separate into two distinct classes that can be identified based on the time scale and the occurrence contexts of the first detectable VHF emissions from the flash. One class has features completely consistent with previously reported FPB events and is associated with continuous VHF emissions of 10–20 μs duration. Downward motion of the FPB region centroid merged continuously into the development of the subsequent upward negative leaders. But the majority of the lightning flashes analyzed began with ultrashort, submicrosecond duration, isolated pulses of VHF emission with no identifiable FPB signatures between these pulses and the leader development. These short VHF pulses begin typically a few hundred microseconds before the upward leader developes and are located at the same position where the leader eventually begins. We suggest that the FPB process is responsible for initiating some but not all lightning flashes, and the extremely short pulse‐like VHF emissions play a role in initiating those flashes without any FPB process.
-
Abstract A positive cloud‐to‐ground (+CG) lightning flash containing a single stroke with a peak current of approximately +310 kA followed by a long continuing current triggered seven upward lightning flashes from tall structures. The flashes were observed on 4 June 2016 at the Tall Object Lightning Observatory in Guangzhou, Guangdong Province, China. The optical and electric field characteristics of these flashes were analyzed using synchronized two‐station data from two high‐speed video cameras, one total‐sky lightning channel imager, two lightning channel imagers, and two sets of slow and fast electric field measuring systems. Three upward flashes were initiated sequentially in the field of view of high‐speed video cameras. One of them was initiated approximately 0.35 ms after the return stroke of +CG flash from the Canton Tower, the tallest structure within a 12‐km radius of the +CG flash, while the other two upward flashes were initiated from two other, more distant tall objects, approximately 18 ms after the +CG flash stroke. The initiation of the latter two upward flashes could be caused by the combined effect of the return stroke of +CG flash, its associated continuing current, and K process in the cloud. Each of these three upward flashes contained multiple downward leader/upward return stroke sequences, with the first leader/return stroke sequence of the second and third flashes occurring only after the completion of the last leader/return stroke sequence of the preceding flash. The total number of strokes in the three upward flashes was 13, and they occurred over approximately 1.5 s.
-
Abstract Using high‐speed video cameras operating with framing rates of 20 and 525 kfps, we imaged the attachment process of a natural negative cloud‐to‐ground flash, occurring at a distance of 490 m. Nine upward leaders were observed. A total of 12 space stems/leaders in 47 steps of the downward negative stepped leader were captured. The two‐dimensional length of them was between 2.0 and 5.9 m, with an average of 3.0 m. The average interstep interval, step length, and two‐dimensional speed of the downward negative leader and that of upward positive leader were statistically analyzed. The last step of the downward negative leader making contact with the upward connecting leader was recorded. The two‐dimensional length of the final imaged gap between the tips of opposite‐polarity leaders was estimated to be about 13 m.
-
Abstract Previous studies have shown that subsequent leaders in positive cloud‐to‐ground lightning (+CG) flashes rarely traverse pre‐existing channels to ground. In this paper, we present evidence that this actually can be common, at least for some thunderstorms. Observations of +CG flashes in a supercell storm in Argentina by Córdoba Argentina Marx Meter Array (CAMMA) are presented, in which 54 (64%) of 84 multiple‐stroke +CG flashes had subsequent leaders following a pre‐existing channel to ground. These subsequent positive leaders are found to behave similarly to their negative counterparts, including propagation speeds along pre‐existing channels with a median of 8 × 106 m/s, which is comparable to that of negative dart leaders. Two representative multiple‐stroke +CG flashes are presented and discussed in detail. The observations reported herein call for an update to the traditional explanation of the disparity between positive and negative lightning.