skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Implementation of an Alpha Damage Annealing Model for Zircon (U‐Th)/He Thermochronology With Comparison to a Zircon Fission Track Annealing Model
Abstract Radiation damage exerts a fundamental control on He diffusion in zircon, which manifests as correlations between (U‐Th)/He date and effective uranium concentration. These correlations can be exploited with modeling to explore long‐term thermal histories. This manuscript focuses on one such model, the zircon radiation damage accumulation and annealing model (ZRDAAM) of Guenthner et al. (2013), https://doi.org/10.2475/03.2013.01, by integrating newly defined alpha damage annealing kinetics measured by Ginster et al. (2019), https://doi.org/10.1016/j.gca.2019.01.033, into ZRDAAM. I explore several consequences of this alpha damage annealing model as it relates to (U‐Th)/He date‐effective uranium (eU) correlations, using representative time‐temperature paths and previously published results. Comparison between the current version of ZRDAAM, which uses fission track annealing, and the new annealing model demonstrates that, for thermal histories with prolonged periods at low temperatures (<50°C), alpha dose annealing kinetics yield slightly younger model dates at low to moderate eU concentrations, older dates at moderate to high eU, and substantially younger dates at the highest eU concentrations. The absolute eU concentrations over which the differences are observed varies for a given thermal history, so these ranges should be interpreted as relative or proportional. Younger model dates at high eU in most thermal histories result from lower amounts of annealing that occur with the Ginster et al. (2019) alpha dose annealing kinetics. This annealing model comparison illustrates that the choice of annealing kinetics has the greatest influence over model output for thermal histories involving either prolonged time periods in the 200–300°C temperature window, or a late‐stage reheating event.  more » « less
Award ID(s):
1848013
PAR ID:
10362177
Author(s) / Creator(s):
 
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geochemistry, Geophysics, Geosystems
Volume:
22
Issue:
2
ISSN:
1525-2027
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Our study used zircon (U-Th)/He (ZHe) thermochronology to resolve cooling events of Precambrian basement below the Great Unconformity surface in the eastern Grand Canyon, United States. We combined new ZHe data with previous thermochronometric results to model the <250 °C thermal history of Precambrian basement over the past >1 Ga. Inverse models of ZHe date-effective uranium (eU) concentration, a relative measure of radiation damage that influences closure temperature, utilize He diffusion and damage annealing and suggest that the main phase of Precambrian cooling to <200 °C was between 1300 and 1250 Ma. This result agrees with mica and potassium feldspar 40Ar/39Ar thermochronology showing rapid post–1400 Ma cooling, and both are consistent with the 1255 Ma depositional age for the Unkar Group. At the young end of the timescale, our data and models are also highly sensitive to late-stage reheating due to burial beneath ∼3–4 km of Phanerozoic strata prior to ca. 60 Ma; models that best match observed date-eU trends show maximum temperatures of 140–160 °C, in agreement with apatite (U-Th)/He and fission-track data. Inverse models also support multi-stage Cenozoic cooling, with post–20 Ma cooling from ∼80 to 20 °C reflecting partial carving of the eastern Grand Canyon, and late rapid cooling indicated by 3–7 Ma ZHe dates over a wide range of high eU. Our ZHe data resolve major basement exhumation below the Great Unconformity during the Mesoproterozoic (1300–1250 Ma), and “young” (20–0 Ma) carving of Grand Canyon, but show little sensitivity to Neoproterozoic and Cambrian basement unroofing components of the composite Great Unconformity. 
    more » « less
  2. The Wyoming Province of Laurentia, which hosts some of the oldest known crustal material on Earth including zircon 207Pb/206Pb ages up to 3.96 Ga in the Beartooth Mountains, Montana, has been subjected to multiple periods of orogenesis and burial from Proterozoic time to present. We present new zircon U-Pb geochronology and zircon (U-Th)/He thermochronology from Archean-Proterozoic metamorphic rocks exposed in the Bridger Range, Montana, to resolve details of their origins and reconstruct their deep-time tectonothermal history. Zircon U-Pb geochronology and cathodoluminescence imaging, paired with whole rock geochemistry and petrography, was obtained from four metamorphic samples including quartzofeldspathic and garnet-biotite gneisses proximal to the “Great Unconformity” (GU), where Archean-Proterozoic metamorphic rocks are unconformably overlain by ~7.5-9 km of compacted Phanerozoic strata. Single grain 207Pb/206Pb ages range from 4099 ± 44 Ma to 1776 ± 24 Ma, extending the age of known crustal material in the northern Wyoming Province into the Hadean and recording high-grade conditions during the Paleoproterozoic Great Falls/Big Sky orogeny. Zircon (U-Th)/He thermochronology from five metamorphic samples proximal to the GU record cooling ages ranging from 705 Ma to 10.3 Ma, reflecting the variable He diffusivity of individual zircon grains with a large range of radiation damage as proxied by effective uranium (eU) concentrations, which range from ~5 to ~3000 ppm. A negative correlation between cooling age and eU is observed across the five samples suggesting the zircon (U-Th)/He system is sensitive to Proterozoic through Miocene thermal perturbations. Ongoing thermal history modeling seeks to reconstruct the temperature-time histories of these metamorphic rocks, including testing whether this dataset is sensitive to thermal effects imparted by the rifting of Rodina and erosion related to Cryogenian glaciation (i.e., hypotheses related to formation of the GU), and the onset of modern, active extension. These datasets and models provide crucial new constraints on the obscured Proterozoic tectonic history of the northern Wyoming Province and have important implications for our understanding of the formation of early crustal material on Earth. 
    more » « less
  3. The Wyoming Province of Laurentia, which hosts some of the oldest known crustal material on Earth including zircon 207Pb/206Pb ages up to 3.96 Ga in the Beartooth Mountains, Montana, has been subjected to multiple periods of orogenesis and burial from Proterozoic time to present. We present new zircon U-Pb geochronology and zircon (U-Th)/He thermochronology from Archean-Proterozoic metamorphic rocks exposed in the Bridger Range, Montana, to resolve details of their origins and reconstruct their deep-time tectonothermal history. Zircon U-Pb geochronology and cathodoluminescence imaging, paired with whole rock geochemistry and petrography, was obtained from four metamorphic samples including quartzofeldspathic and garnet-biotite gneisses proximal to the “Great Unconformity” (GU), where Archean-Proterozoic metamorphic rocks are unconformably overlain by ~7.5-9 km of compacted Phanerozoic strata. Single grain 207Pb/206Pb ages range from 4099 ± 44 Ma to 1776 ± 24 Ma, extending the age of known crustal material in the northern Wyoming Province into the Hadean and recording high-grade conditions during the Paleoproterozoic Great Falls/Big Sky orogeny. Zircon (U-Th)/He thermochronology from five metamorphic samples proximal to the GU record cooling ages ranging from 705 Ma to 10.3 Ma, reflecting the variable He diffusivity of individual zircon grains with a large range of radiation damage as proxied by effective uranium (eU) concentrations, which range from ~5 to ~3000 ppm. A negative correlation between cooling age and eU is observed across the five samples suggesting the zircon (U-Th)/He system is sensitive to Proterozoic through Miocene thermal perturbations. Ongoing thermal history modeling seeks to reconstruct the temperature-time histories of these metamorphic rocks, including testing whether this dataset is sensitive to thermal effects imparted by the rifting of Rodina and erosion related to Cryogenian glaciation (i.e., hypotheses related to formation of the GU), and the onset of modern, active extension. These datasets and models provide crucial new constraints on the obscured Proterozoic tectonic history of the northern Wyoming Province and have important implications for our understanding of the formation of early crustal material on Earth. 
    more » « less
  4. Abstract Detailed geochronology from two compositionally distinct generations of dikes and sills intruded into the Alta metamorphic aureole, north‐central Utah, complement previous geochronologic studies from the Alta stock, providing information on the timing of magmatism and the nature of emplacement. Uranium/thorium‐lead dates and chemistry were measured in zircon and monazite from these intrusions and associated reaction selvages in hornfels by split‐stream laser ablation techniques. Concordant zircon U‐Pb dates (n = 532) define a dispersed population of dates that range from ∼38 to 32 Ma. Monazite Th‐Pb dates (n = 888) from granodioritic compositions range from ∼40 to 32 Ma. Evaluation of208Pb/232Th and207Pb/206Pb‐corrected dates with respect to common Pb, U and Th/U values allows rigorous evaluation of the effects of excess206Pb in these young monazites, yielding concordant208Pb/232Th and207Pb/206Pb‐corrected dates in monazites from the granodiorite, consistent with zircon dates from the same thin sections. Leucogranite sills and dikes, which cross‐cut the older granodiorite, have younger monazite dates from ∼33 to 28 Ma. Elevated heavy rare earth element concentrations and trends of larger negative Eu anomalies in the youngest monazites suggest crystallization from an evolved melt. Integration of these new geochronology results and field relationships with prior results from the Alta stock indicate the granodiorite represents the oldest material emplaced in the Alta system. Leucogranite aplite/pegmatite dikes and sills in the inner Alta aureole were emplaced during the final stage of Alta stock construction by injection of evolved water‐rich magmas. 
    more » « less
  5. Abstract Archean rocks exposed in the Beartooth Mountains, Montana and Wyoming, have experienced a complex >2.5 Gyr thermal history related to the long‐term geodynamic evolution of Laurentia. We constrain this history using “deep‐time” thermochronology, reporting zircon U‐Pb, biotite40Ar/39Ar, and zircon and apatite [U‐Th(‐Sm)]/He results from three transects across the basement‐core of the range. Our central transect yielded a zircon U‐Pb concordia age of 2,805.6 ± 6.4 Ma. Biotite40Ar/39Ar plateau ages from western samples are ≤1,775 ± 27 Ma, while those from samples further east are ≥2,263 ± 76 Ma. Zircon (U‐Th)/He dates span 686.4 ± 11.9 to 13.5 ± 0.3 Ma and show a negative relationship with effective uranium—a proxy for radiation damage. Apatite (U‐Th)/He dates are 109.2 ± 23.9 to 43.6 ± 1.9 Ma and correlate with sample elevation. Multi‐chronometer Bayesian time‐temperature inversions suggest: (a) Cooling between ∼1.90 and ∼1.80 Ga, likely related to Big Sky orogeny thermal effects; (b) Reheating between ∼1.80 Ga and ∼1.35 Ga consistent with Mesoproterozoic burial; (c) Cooling to ≤100°C between Mesoproterozoic and early Paleozoic time, likely reflecting continental erosion; (d) Variable Paleozoic–Jurassic cooling, possibly related to Paleozoic tectonism and/or low eustatic sea level; (e) Rapid Cretaceous–Paleocene cooling, preceding accepted proxies for flat‐slab subduction; (f) Eocene–Miocene reheating consistent with reburial by Cenozoic volcanics and/or sediments; (g) Post‐20 Ma cooling consistent with Neogene development of topographic relief. Our results emphasize the utility of multi‐chronometer thermochronology in recovering complex, non‐monotonic multi‐billion‐year thermal histories. 
    more » « less