skip to main content

Title: Influences of CAPE on Hail Production in Simulated Supercell Storms

Lasting updrafts are necessary to produce severe hail; conventional wisdom suggests that extremely large hailstones require updrafts of commensurate strength. Because updraft strength is largely controlled by convective available potential energy (CAPE), one would expect environments with larger CAPE to be conducive to storms producing larger hail. By systematically varying CAPE in a horizontally homogeneous initial environment, we simulate hail production in high-shear, high-instability supercell storms using Cloud Model 1 and a detailed 3D hail growth trajectory model. Our results suggest that CAPE modulates the updraft’s strength, width, and horizontal wind field, as well as the liquid water content along hailstones’ trajectories, all of which have a significant impact on final hail sizes. In particular, hail sizes are maximized for intermediate CAPE values in the range we examined. Results show a non-monotonic relationship between the hailstones’ residence time and CAPE due to changes to the updraft wind field. The ratio of updraft area to southerly wind speed within the updraft serves as a proxy for residence time. Storms in environments with large CAPE may produce smaller hail because the in-updraft horizontal wind speeds become too great, and hailstones are prematurely ejected out of the optimal growth region. Liquid water content (LWC) along favorable hailstone pathways also exhibits peak values for intermediate CAPE values, owing to the horizontal displacement across the midlevel updraft of moist inflow air from differing source levels. In other words, larger CAPE does not equal larger hail, and storm-structural nuances must be examined.

more » « less
Award ID(s):
1855063 1661679
Author(s) / Creator(s):
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of the Atmospheric Sciences
Page Range / eLocation ID:
p. 179-204
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract A detailed microphysical model of hail growth is developed and applied to idealized numerical simulations of deep convective storms. Hailstone embryos of various sizes and densities may be initialized in and around the simulated convective storm updraft, and then are tracked as they are advected and grow through various microphysical processes. Application to an idealized squall line and supercell storm results in a plausibly realistic distribution of maximum hailstone sizes for each. Simulated hail growth trajectories through idealized supercell storms exhibit many consistencies with previous hail trajectory work that used observed storms. Systematic tests of uncertain model parameters and parameterizations are performed, with results highlighting the sensitivity of hail size distributions to these changes. A set of idealized simulations is performed for supercells in environments with varying vertical wind shear to extend and clarify our prior work. The trajectory calculations reveal that, with increased zonal deep-layer shear, broader updrafts lead to increased residence time and thus larger maximum hail sizes. For cases with increased meridional low-level shear, updraft width is also increased, but hailstone sizes are smaller. This is a result of decreased residence time in the updraft, owing to faster northward flow within the updraft that advects hailstones through the growth region more rapidly. The results suggest that environments leading to weakened horizontal flow within supercell updrafts may lead to larger maximum hailstone sizes. 
    more » « less
  2. null (Ed.)
    Abstract Storms that produce gargantuan hail (defined here as ≥ 6 inches or 15 cm in maximum dimension), although seemingly rare, can cause extensive damage to property and infrastructure, and cause injury or even death to humans and animals. Currently, we are limited in our ability to accurately predict gargantuan hail and detect gargantuan hail on radar. In this study, we analyze the environments and radar characteristics of gargantuan hail-producing storms to define the parameter space of environments in which gargantuan hail occurs, and compare environmental parameters and radar signatures in these storms to storms producing other sizes of hail. We find that traditionally used environmental parameters used for severe storms prediction, such as most unstable convective available potential energy (MUCAPE) and 0–6 km vertical wind shear, display considerable overlap between gargantuan hail-producing storm environments and those that produce smaller hail. There is a slight tendency for larger MUCAPE values for gargantuan hail cases, however. Additionally, gargantuan hail-producing storms seem to have larger low-level storm-relative winds and larger updraft widths than those storms producing smaller hail, implying updrafts less diluted by entrainment and perhaps maximizing the liquid water content available for hail growth. Moreover, radar reflectivity or products derived from it are not different from cases of smaller hail sizes. However, inferred mesocyclonic rotational velocities within the hail growth region of storms that produce gargantuan hail are significantly stronger than the rotational velocities found for smaller hail categories. 
    more » « less
  3. Abstract

    This study uses a new, unique dataset created by combining multi-Doppler radar wind and reflectivity analysis, diabatic Lagrangian analysis (DLA) retrievals of temperature and water substance, and a complex hail trajectory model to create millions of numerically simulated hail trajectories in the Kingfisher, Oklahoma, supercell on 29 May 2012. The DLA output variables are used to obtain a realistic, 4D depiction of the storm’s thermal and hydrometeor structure as required input to the detailed hail growth trajectory model. Hail embryos are initialized in the hail growth module every 3 min of the radar analysis period (2251–0000 UTC) to produce over 2.7 million hail trajectories. A spatial integration technique considering all trajectories is used to identify locations within the supercell where melted particles and subsevere and severe hailstones reside in their lowest and highest concentrations. It is found that hailstones are more likely to reside for longer periods closer to the downshear updraft within the midlevel mesocyclone in a region of decelerated midlevel mesocyclonic horizontal flow, termed the downshear deceleration zone (DDZ). Additionally, clusters of trajectories are analyzed using a trajectory clustering method. Trajectory clusters show there are many trajectory pathways that result in hailstones ≥ 4.5 cm, including trajectories that begin upshear of the updraft away from ideal growth conditions and trajectories that grow within the DDZ. There are also trajectory clusters with similar shapes that experience widely different environmental and hailstone characteristics along the trajectory.

    Significance Statement

    The purpose of this study is to understand how hail grew in a thunderstorm that was observed by numerous instruments. The observations were input into a hail trajectory model to simulate hail growth. We found a part of the storm near the updraft where hailstones could remain aloft longer and therefore grow larger. Most modeled severe hailstones were found in the storm in this region. However, we also found that there are many different pathways hailstones can take to become large, although there are still some common characteristics among the pathways.

    more » « less
  4. Abstract

    Observed supercell updrafts consistently produce the fastest mid- to upper-tropospheric vertical velocities among all modes of convection. Two hypotheses for this feature are investigated. In the dynamic hypothesis, upward, largely rotationally driven pressure gradient accelerations enhance supercell updrafts relative to other forms of convection. In the thermodynamic hypothesis, supercell updrafts have more low-level inflow than ordinary updrafts because of the large vertical wind shear in supercell environments. This large inflow makes supercell updrafts wider than that of ordinary convection and less susceptible to the deleterious effects of entrainment-driven updraft core dilution on buoyancy. These hypotheses are tested using a large suite of idealized supercell simulations, wherein vertical shear, CAPE, and moisture are systematically varied. Consistent with the thermodynamic hypothesis, storms with the largest storm-relative flow have larger inflow, are wider, have larger buoyancy, and have faster updrafts. Analyses of the vertical momentum forcing along trajectories shows that maximum vertical velocities are often enhanced by dynamic pressure accelerations, but this enhancement is accompanied by larger downward buoyant pressure accelerations than in ordinary convection. Integrated buoyancy along parcel paths is therefore a strong constraint on maximum updraft speeds. Thus, through a combination of processes consistent with the dynamic and thermodynamic hypotheses, supercell updrafts are able to realize a larger percentage of CAPE than ordinary updrafts.

    more » « less
  5. Abstract

    Severe convective storms (SCS) and their associated hazards present significant societal risk. Understanding of how these hazards, such as hailfall, may change due to anthropogenic climate change is in its infancy. Previous methods used to investigate possible changes in SCS and their hail used climate model output and were limited by their coarse spatiotemporal resolution and less detailed representations of hail. This study instead uses an event-level pseudo–global warming (PGW) approach to simulate seven different hailstorms in their historical environments, and again in five different end-of-century PGW environments obtained from the worst-case scenario increases in CO2of five different CMIP5 members. Changes in large-scale environmental parameters were generally found to be consistent with prior studies, showing mostly increases in CAPE, CIN, and precipitable water, with minor changes in vertical wind shear. Nearly all simulated events had moderately stronger updrafts in the PGW environments. Only cold-season events showed an increase in hail sizes both within the storms and at the surface, whereas warm-season events exhibited a decrease in hail sizes at the surface and aloft. Changes in the event-total hailfall area at the ground also showed a seasonal trend, with increases in cold-season events and decreases in warm-season events. Melting depths increased for all PGW environments, and these increases likely contributed to greater rainfall area for warm-season events, where an increase in smaller hail aloft would be more prone to melting. The differences in PGW simulation hail sizes in cold-season and warm-season events found here are likely related to differences in microphysical processes and warrant future study.

    Significance Statement

    It is uncertain how severe thunderstorm hazards (such as hail, tornadoes, and damaging winds) may change due to human-induced climate change. Given the significant societal risk these hazards pose, this study seeks to better understand how hailstorms may change in the future. Simulated end-of-century storms in winter months showed larger hail sizes and a larger area of event-total hailfall than in the historical simulations, whereas simulated future storms in spring and summer months showed smaller hail sizes and a reduction in the area where hail fell. An analysis of traditional environmental and storm-scale properties did not reveal a clear distinction between cold-season and warm-season hailstorms, suggesting that changes in small-scale precipitation processes may be responsible.

    more » « less