skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1855063

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Supercell storms are commonly responsible for severe hail, which is the costliest severe storm hazard in the United States and elsewhere. Radar observations of such storms are common and have been leveraged to estimate hail size and severe hail occurrence. However, many established relationships between radar-observed storm characteristics and severe hail occurrence have been found using data from few storms and in isolation from other radar metrics. This study leverages a 10-yr record of polarimetric Doppler radar observations in the United States to evaluate and compare radar observations of thousands of severe hail–producing supercells based on their maximum hail size. In agreement with prior studies, it is found that increasing hail size relates to increasing volume of high (≥50 dBZ) radar reflectivity, increasing midaltitude mesocyclone rotation (azimuthal shear), increasing storm-top divergence, and decreased differential reflectivity and copolar correlation coefficient at low levels (mostly below the environmental 0°C level). New insights include increasing vertical alignment of the storm mesocyclone with increasing hail size and a Doppler velocity spectrum width minimum aloft near storm center that increases in area with increasing hail size and is argued to indicate increasing updraft width. To complement the extensive radar analysis, near-storm environments from reanalyses are compared and indicate that the greatest environmental differences exist in the middle troposphere (within the hail growth region), especially the wind speed perpendicular to storm motion. Recommendations are given for future improvements to radar-based hail-size estimation. 
    more » « less
  2. Abstract Lasting updrafts are necessary to produce severe hail; conventional wisdom suggests that extremely large hailstones require updrafts of commensurate strength. Because updraft strength is largely controlled by convective available potential energy (CAPE), one would expect environments with larger CAPE to be conducive to storms producing larger hail. By systematically varying CAPE in a horizontally homogeneous initial environment, we simulate hail production in high-shear, high-instability supercell storms using Cloud Model 1 and a detailed 3D hail growth trajectory model. Our results suggest that CAPE modulates the updraft’s strength, width, and horizontal wind field, as well as the liquid water content along hailstones’ trajectories, all of which have a significant impact on final hail sizes. In particular, hail sizes are maximized for intermediate CAPE values in the range we examined. Results show a non-monotonic relationship between the hailstones’ residence time and CAPE due to changes to the updraft wind field. The ratio of updraft area to southerly wind speed within the updraft serves as a proxy for residence time. Storms in environments with large CAPE may produce smaller hail because the in-updraft horizontal wind speeds become too great, and hailstones are prematurely ejected out of the optimal growth region. Liquid water content (LWC) along favorable hailstone pathways also exhibits peak values for intermediate CAPE values, owing to the horizontal displacement across the midlevel updraft of moist inflow air from differing source levels. In other words, larger CAPE does not equal larger hail, and storm-structural nuances must be examined. 
    more » « less
  3. Abstract. The layered structures inside hailstones provide a direct indication of their shape and properties at various stages during growth. Given the myriadof different trajectories that can exist, and the sensitivity of rime deposit type to environmental conditions, it must be expected that manydifferent perturbations of hailstone properties occur within a single hailstorm; however, some commonalities are likely in the shared early stagesof growth, for hailstones of similar size (especially those that grow along similar trajectories) and final growth near the melting level. Itremains challenging to extract this information from a large sample of hailstones because of the time required to prepare cross sections andaccurately measure individual layers. To reduce the labour and potential errors introduced by manual analysis of hailstones, an automated method formeasuring layers from cross section photographs is introduced and applied to a set of hailstones collected in Melbourne, Australia. This work ismotivated by new hail growth simulation tools that model the growth of layers within individual hailstones, for which accurate measurements ofobserved hailstone cross sections can be applied as validation. A first look at this new type of evaluation for hail growth simulations isdemonstrated. 
    more » « less
  4. Abstract Hailstorms pose a significant socioeconomic risk, necessitating detailed assessments of how the hail threat changes throughout their lifetimes. Hail production involves the favorable juxtaposition of ingredients, but how storm evolution affects these ingredients is unknown, limiting understanding of how hail production evolves. Unfortunately, neither surface hail reports nor radar-based swath estimates have adequate resolution or details needed to assess evolving hail production. Instead, we use a novel approach of coupling a detailed hail trajectory model to idealized convective storm simulations to better understand storm evolution’s influence on hail production. Hail production varies substantially throughout storms’ mature phases: maximum sizes vary by a factor of two, and the concentration of severe hail more than fivefold during 45-60-min periods. This variability arises from changes in updraft properties, which come from (i) changes in low-level convergence, and (ii) internal storm dynamics, including anticyclonic vortex shedding/storm splitting, and the response of the updraft’s airflow and supercooled liquid water content to these events. Hodograph shape strongly affects such behaviors. Straighter hodographs lead to more prolific hail production through wider updrafts and weaker mesocyclones, and a periodicity in hail size metrics associated with anticyclonic vortex shedding and/or storm splitting. In contrast, a curved hodograph (favorable for tornadoes) led to a storm with a stronger but more compact updraft, which occasionally produced giant (10-cm) hail, but that was a less-prolific severe hail producer overall. Unless storms are adequately sampled throughout their lifecycles, snapshots from ground reports will insufficiently resolve the true nature of hail production. 
    more » « less
  5. null (Ed.)
    Abstract Hailstone growth results in a variety of hailstone shapes. These shapes hold implications for modeling of hail processes, hailstone fall behaviors including fall speeds, and remote sensing signatures of hail. This study is an in-depth analysis of natural hailstone shapes, using a large dataset of hailstones collected in the field over a 6-yr period. These data come from manual measurements with digital calipers and three-dimensional infrared laser scans. Hailstones tend to have an ellipsoidal geometry with minor-to-major axis ratios ranging from 0.4 to 0.8, and intermediate-to-major axis ratios between 0.8 and 1.0. These suggest hailstones are better represented as triaxial ellipsoids as opposed to spheres or spheroids, which is commonly assumed. The laser scans allow for precise sphericity measurements, for the first time. Hailstones become increasingly nonspherical with increasing maximum dimension, with a typical range of sphericity values of 0.57 to 0.99. These sphericity values were used to estimate the drag coefficient, which was found to have a typical range of 0.5 to over 0.9. Hailstone maximum dimension tends to be 20%–50% larger than the equivalent-volume spherical diameter. As a step toward understanding and quantifying hailstone shapes, this study may aid in better parameterizations of hail in models and remote sensing hail detection and sizing algorithms. 
    more » « less
  6. null (Ed.)
    Abstract A detailed microphysical model of hail growth is developed and applied to idealized numerical simulations of deep convective storms. Hailstone embryos of various sizes and densities may be initialized in and around the simulated convective storm updraft, and then are tracked as they are advected and grow through various microphysical processes. Application to an idealized squall line and supercell storm results in a plausibly realistic distribution of maximum hailstone sizes for each. Simulated hail growth trajectories through idealized supercell storms exhibit many consistencies with previous hail trajectory work that used observed storms. Systematic tests of uncertain model parameters and parameterizations are performed, with results highlighting the sensitivity of hail size distributions to these changes. A set of idealized simulations is performed for supercells in environments with varying vertical wind shear to extend and clarify our prior work. The trajectory calculations reveal that, with increased zonal deep-layer shear, broader updrafts lead to increased residence time and thus larger maximum hail sizes. For cases with increased meridional low-level shear, updraft width is also increased, but hailstone sizes are smaller. This is a result of decreased residence time in the updraft, owing to faster northward flow within the updraft that advects hailstones through the growth region more rapidly. The results suggest that environments leading to weakened horizontal flow within supercell updrafts may lead to larger maximum hailstone sizes. 
    more » « less
  7. Abstract On 8 February 2018, a supercell storm produced gargantuan (> 15 cm or > 6 inches in maximum dimension) hail as it moved over the heavily populated city of Villa Carlos Paz in Córdoba Province, Argentina, South America. Observations of gargantuan hail are quite rare, but the large population density here yielded numerous witnesses and social media pictures and videos from this event that document multiple large hailstones. The storm was also sampled by the newly installed operational polarimetric C-band radar in Córdoba. During the RELAMPAGO campaign, the authors interviewed local residents about their accounts of the storm, and uncovered additional social media video and photographs revealing extremely large hail at multiple locations in town. This article documents the case, including the meteorological conditions supporting the storm (with the aid of a high-resolution WRF simulation), the storm’s observed radar signatures, and three noteworthy hailstones observed by residents. These hailstones include a freezer-preserved 4:48-inch (11:38-cm) maximum dimension stone that was scanned with a 3D infrared laser scanner, a 7:1-inch (18-cm) maximum dimension stone, and a hailstone photogrammetrically estimated to be between 7:4 and 9:3 inches (18:8-23:7- cm) in maximum dimension, which is close to or exceeds the world record for maximum dimension. Such a well-observed case is an important step forward in understanding environments and storms that produce gargantuan hail, and ultimately how to anticipate and detect such extreme events. (Capsule Summary) Gargantuan hail fell in Argentina on 8 February 2018, including one hailstone that is possibly a world-record for maximum dimension. We document eyewitness and social media accounts of the hail, and analyze the parent storm and its environment. 
    more » « less