skip to main content


Search for: All records

Award ID contains: 1661679

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Lasting updrafts are necessary to produce severe hail; conventional wisdom suggests that extremely large hailstones require updrafts of commensurate strength. Because updraft strength is largely controlled by convective available potential energy (CAPE), one would expect environments with larger CAPE to be conducive to storms producing larger hail. By systematically varying CAPE in a horizontally homogeneous initial environment, we simulate hail production in high-shear, high-instability supercell storms using Cloud Model 1 and a detailed 3D hail growth trajectory model. Our results suggest that CAPE modulates the updraft’s strength, width, and horizontal wind field, as well as the liquid water content along hailstones’ trajectories, all of which have a significant impact on final hail sizes. In particular, hail sizes are maximized for intermediate CAPE values in the range we examined. Results show a non-monotonic relationship between the hailstones’ residence time and CAPE due to changes to the updraft wind field. The ratio of updraft area to southerly wind speed within the updraft serves as a proxy for residence time. Storms in environments with large CAPE may produce smaller hail because the in-updraft horizontal wind speeds become too great, and hailstones are prematurely ejected out of the optimal growth region. Liquid water content (LWC) along favorable hailstone pathways also exhibits peak values for intermediate CAPE values, owing to the horizontal displacement across the midlevel updraft of moist inflow air from differing source levels. In other words, larger CAPE does not equal larger hail, and storm-structural nuances must be examined.

     
    more » « less
  2. Abstract During the early morning hours of 5 November 2018, a mature mesoscale convective system (MCS) propagated discretely over the second-most populous province of Argentina, Córdoba Province, during the Remote Sensing of Electrification, Lightning, and Mesoscale/Microscale Processes with Adaptive Ground Observations–Cloud, Aerosol, and Complex Terrain Interactions (RELAMPAGO–CACTI) joint field campaigns. Storm behavior was modified by the Sierras de Córdoba, a north–south-oriented regional mountain chain located in the western side of the province. Here, we present observational evidence of the discrete propagation event and the impact of the mountains on the associated physical processes. As the mature MCS moved northeastward and approached the windward side of the mountains, isolated convective cells developed downstream in the mountain lee, 20–50 km ahead of the main convective line. Cells were initiated by an undular bore, which formed as the MCS cold pool moved over the mountain ridge and perturbed the leeside nocturnal, low-level stable layer. The field of isolated cells organized into a new MCS, which continued to move northeastward, while the parent storm decayed as it traversed the mountains. Only the southern portion of the storm propagated discretely, due to variability in mountain height along the chain. In the north, taller mountain peaks prevented the MCS cold pool from moving over the terrain and perturbing the stable layer. Consequently, no bore was generated, and no discrete propagation occurred in this region. To the south, the MCS cold pool was able to traverse the lower-relief mountains, and the discrete propagation was successful. 
    more » « less
  3. Abstract Hailstorms pose a significant socioeconomic risk, necessitating detailed assessments of how the hail threat changes throughout their lifetimes. Hail production involves the favorable juxtaposition of ingredients, but how storm evolution affects these ingredients is unknown, limiting understanding of how hail production evolves. Unfortunately, neither surface hail reports nor radar-based swath estimates have adequate resolution or details needed to assess evolving hail production. Instead, we use a novel approach of coupling a detailed hail trajectory model to idealized convective storm simulations to better understand storm evolution’s influence on hail production. Hail production varies substantially throughout storms’ mature phases: maximum sizes vary by a factor of two, and the concentration of severe hail more than fivefold during 45-60-min periods. This variability arises from changes in updraft properties, which come from (i) changes in low-level convergence, and (ii) internal storm dynamics, including anticyclonic vortex shedding/storm splitting, and the response of the updraft’s airflow and supercooled liquid water content to these events. Hodograph shape strongly affects such behaviors. Straighter hodographs lead to more prolific hail production through wider updrafts and weaker mesocyclones, and a periodicity in hail size metrics associated with anticyclonic vortex shedding and/or storm splitting. In contrast, a curved hodograph (favorable for tornadoes) led to a storm with a stronger but more compact updraft, which occasionally produced giant (10-cm) hail, but that was a less-prolific severe hail producer overall. Unless storms are adequately sampled throughout their lifecycles, snapshots from ground reports will insufficiently resolve the true nature of hail production. 
    more » « less
  4. null (Ed.)
    Abstract Storms that produce gargantuan hail (defined here as ≥ 6 inches or 15 cm in maximum dimension), although seemingly rare, can cause extensive damage to property and infrastructure, and cause injury or even death to humans and animals. Currently, we are limited in our ability to accurately predict gargantuan hail and detect gargantuan hail on radar. In this study, we analyze the environments and radar characteristics of gargantuan hail-producing storms to define the parameter space of environments in which gargantuan hail occurs, and compare environmental parameters and radar signatures in these storms to storms producing other sizes of hail. We find that traditionally used environmental parameters used for severe storms prediction, such as most unstable convective available potential energy (MUCAPE) and 0–6 km vertical wind shear, display considerable overlap between gargantuan hail-producing storm environments and those that produce smaller hail. There is a slight tendency for larger MUCAPE values for gargantuan hail cases, however. Additionally, gargantuan hail-producing storms seem to have larger low-level storm-relative winds and larger updraft widths than those storms producing smaller hail, implying updrafts less diluted by entrainment and perhaps maximizing the liquid water content available for hail growth. Moreover, radar reflectivity or products derived from it are not different from cases of smaller hail sizes. However, inferred mesocyclonic rotational velocities within the hail growth region of storms that produce gargantuan hail are significantly stronger than the rotational velocities found for smaller hail categories. 
    more » « less
  5. null (Ed.)
    Abstract This article provides an overview of the experimental design, execution, education and public outreach, data collection, and initial scientific results from the Remote sensing of Electrification, Lightning, And Mesoscale/microscale Processes with Adaptive Ground Observations (RELAMPAGO) field campaign. RELAMPAGO was a major field campaign conducted in Córdoba and Mendoza provinces in Argentina, and western Rio Grande do Sul State in Brazil in 2018-2019 that involved more than 200 scientists and students from the US, Argentina, and Brazil. This campaign was motivated by the physical processes and societal impacts of deep convection that frequently initiates in this region, often along the complex terrain of the Sierras de Córdoba and Andes, and often grows rapidly upscale into dangerous storms that impact society. Observed storms during the experiment produced copious hail, intense flash flooding, extreme lightning flash rates and other unusual lightning phenomena, but few tornadoes. The 5 distinct scientific foci of RELAMPAGO: convection initiation, severe weather, upscale growth, hydrometeorology, and lightning and electrification are described, as are the deployment strategies to observe physical processes relevant to these foci. The campaign’s international cooperation, forecasting efforts, and mission planning strategies enabled a successful data collection effort. In addition, the legacy of RELAMPAGO in South America, including extensive multi-national education, public outreach, and social media data-gathering associated with the campaign, is summarized. 
    more » « less
  6. null (Ed.)
    Abstract Hailstone growth results in a variety of hailstone shapes. These shapes hold implications for modeling of hail processes, hailstone fall behaviors including fall speeds, and remote sensing signatures of hail. This study is an in-depth analysis of natural hailstone shapes, using a large dataset of hailstones collected in the field over a 6-yr period. These data come from manual measurements with digital calipers and three-dimensional infrared laser scans. Hailstones tend to have an ellipsoidal geometry with minor-to-major axis ratios ranging from 0.4 to 0.8, and intermediate-to-major axis ratios between 0.8 and 1.0. These suggest hailstones are better represented as triaxial ellipsoids as opposed to spheres or spheroids, which is commonly assumed. The laser scans allow for precise sphericity measurements, for the first time. Hailstones become increasingly nonspherical with increasing maximum dimension, with a typical range of sphericity values of 0.57 to 0.99. These sphericity values were used to estimate the drag coefficient, which was found to have a typical range of 0.5 to over 0.9. Hailstone maximum dimension tends to be 20%–50% larger than the equivalent-volume spherical diameter. As a step toward understanding and quantifying hailstone shapes, this study may aid in better parameterizations of hail in models and remote sensing hail detection and sizing algorithms. 
    more » « less
  7. Abstract On 10 November 2018, during the RELAMPAGO field campaign in Argentina, South America, a thunderstorm with supercell characteristics was observed by an array of mobile observing instruments, including three Doppler on Wheels radars. In contrast to the archetypal supercell described in the Glossary of Meteorology, the updraft rotation in this storm was rather short lived (~25 min), causing some initial doubt as to whether this indeed was a supercell. However, retrieved 3D winds from dual-Doppler radar scans were used to document a high spatial correspondence between midlevel vertical velocity and vertical vorticity in this storm, thus providing evidence to support the supercell categorization. Additional data collected within the RELAMPAGO domain revealed other storms with this behavior, which appears to be attributable in part to effects of the local terrain. Specifically, the IOP4 supercell and other short-duration supercell cases presented had storm motions that were nearly perpendicular to the long axis of the Sierras de Córdoba Mountains; a long-duration supercell case, on the other hand, had a storm motion nearly parallel to these mountains. Sounding observations as well as model simulations indicate that a mountain-perpendicular storm motion results in a relatively short storm residence time within the narrow zone of terrain-enhanced vertical wind shear. Such a motion and short residence time would limit the upward tilting, by the left-moving supercell updraft, of the storm-relative, antistreamwise horizontal vorticity associated with anabatic flow near complex terrain. 
    more » « less
  8. null (Ed.)
    Abstract A detailed microphysical model of hail growth is developed and applied to idealized numerical simulations of deep convective storms. Hailstone embryos of various sizes and densities may be initialized in and around the simulated convective storm updraft, and then are tracked as they are advected and grow through various microphysical processes. Application to an idealized squall line and supercell storm results in a plausibly realistic distribution of maximum hailstone sizes for each. Simulated hail growth trajectories through idealized supercell storms exhibit many consistencies with previous hail trajectory work that used observed storms. Systematic tests of uncertain model parameters and parameterizations are performed, with results highlighting the sensitivity of hail size distributions to these changes. A set of idealized simulations is performed for supercells in environments with varying vertical wind shear to extend and clarify our prior work. The trajectory calculations reveal that, with increased zonal deep-layer shear, broader updrafts lead to increased residence time and thus larger maximum hail sizes. For cases with increased meridional low-level shear, updraft width is also increased, but hailstone sizes are smaller. This is a result of decreased residence time in the updraft, owing to faster northward flow within the updraft that advects hailstones through the growth region more rapidly. The results suggest that environments leading to weakened horizontal flow within supercell updrafts may lead to larger maximum hailstone sizes. 
    more » « less
  9. Abstract On 8 February 2018, a supercell storm produced gargantuan (> 15 cm or > 6 inches in maximum dimension) hail as it moved over the heavily populated city of Villa Carlos Paz in Córdoba Province, Argentina, South America. Observations of gargantuan hail are quite rare, but the large population density here yielded numerous witnesses and social media pictures and videos from this event that document multiple large hailstones. The storm was also sampled by the newly installed operational polarimetric C-band radar in Córdoba. During the RELAMPAGO campaign, the authors interviewed local residents about their accounts of the storm, and uncovered additional social media video and photographs revealing extremely large hail at multiple locations in town. This article documents the case, including the meteorological conditions supporting the storm (with the aid of a high-resolution WRF simulation), the storm’s observed radar signatures, and three noteworthy hailstones observed by residents. These hailstones include a freezer-preserved 4:48-inch (11:38-cm) maximum dimension stone that was scanned with a 3D infrared laser scanner, a 7:1-inch (18-cm) maximum dimension stone, and a hailstone photogrammetrically estimated to be between 7:4 and 9:3 inches (18:8-23:7- cm) in maximum dimension, which is close to or exceeds the world record for maximum dimension. Such a well-observed case is an important step forward in understanding environments and storms that produce gargantuan hail, and ultimately how to anticipate and detect such extreme events. (Capsule Summary) Gargantuan hail fell in Argentina on 8 February 2018, including one hailstone that is possibly a world-record for maximum dimension. We document eyewitness and social media accounts of the hail, and analyze the parent storm and its environment. 
    more » « less
  10. Abstract. A new technique, named “HailPixel”, is introduced for measuring the maximum dimension and intermediate dimension of hailstones from aerial imagery. The photogrammetry procedure applies a convolutional neural network for robust detection of hailstones against complex backgrounds and an edge detection method for measuring the shape of identified hailstones. This semi-automated technique is capable of measuring many thousands of hailstones within a single survey, which is several orders of magnitude larger (e.g. 10 000 or more hailstones) than population sizes from existing sensors (e.g. a hail pad). Comparison with a co-located hail pad for an Argentinian hailstorm event during the RELAMPAGO project demonstrates the larger population size of the HailPixel survey significantly improves the shape and tails of the observed hail size distribution. When hail fall is sparse, such as during large and giant hail events, the large survey area of this technique is especially advantageous for resolving the hail size distribution. 
    more » « less