skip to main content


Title: Polymer Stabilized Paraboloid Liquid Crystal Microlenses with Integrated Pancharatnam–Berry Phase
Abstract

Aspheric lenses reduce aberration and provide sharper images with improved spot size compared to spherical lenses. This paper demonstrates that applying shear flow can produce plano‐concave liquid crystal (LC) lens arrays with paraboloid aspheric profiles. The focal length of individual lenses, with a 0.2 mm aperture, decreases from 0.67 to 0.45 mm as the chiral dopant increases from 0 to 6 wt%. The focal length is also sensitive to the polarization state of the incoming light. The lenses are stabilized by photopolymerizing with 6 wt% of reactive monomer added to the LC. A qualitative explanation for the flow‐induced lens formation and the optical properties of the lenses is provided. The potential tunability of the lenses in various fields and their use as paraboloid reflectors are discussed.

 
more » « less
Award ID(s):
1709985 1904091
PAR ID:
10362294
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Optical Materials
Volume:
10
Issue:
2
ISSN:
2195-1071
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents the design, simulation and experimental validation of a gradient-index (GRIN) metasurface lens operating at 8 GHz for microwave imaging applications. The unit cell of the metasurface consists of an electric-LC (ELC) resonator. The effective refractive index of the metasurface is controlled by varying the capacitive gap at the center of the unit cell. This allows the design of a gradient index surface. A one-dimensional gradient index lens is designed and tested at first to describe the operational principle of such lenses. The design methodology is extended to a 2D gradient index lens for its potential application as a microwave imaging device. The metasurface lenses are designed and analyzed using full-wave finite element (FEM) solver. The proposed 2D lens has an aperture of size 119 mm (3.17λ) × 119 mm (3.17λ) and thickness of only 0.6 mm (0.016λ). Horn antenna is used as source of plane waves incident on the lens to evaluate the focusing performance. Field distributions of the theoretical designs and fabricated lenses are analyzed and are shown to be in good agreement. A microwave nondestructive evaluation (NDE) experiment is performed with the 2D prototype lens to image a machined groove in a Teflon sample placed at the focal plane of the lens. 
    more » « less
  2. Optofluidic devices that dynamically respond to light stimuli have the potential to impart modern adaptive optics with intrinsic optical logic without the need for external power sources or feedback control. While photo actuation is typically associated with low energy efficiency compared with alternative modes of actuation, fluid lenses can be tuned with minimal work by generating small differential pressures across the surface of the lens to drive a change in focal length. In this study, we developed a wide aperture (9.5 mm) photothermally actuated lens that leverages spatially and thermodynamically informed design principles developed for resistively heated thermo-pneumatically actuated lenses. Using experimentally validated models to describe the curvature of pressurized elastomer-bound interfaces, we demonstrated phototunable modulation of the focal length from 124 mm to 90 mm in real time using 233 mW of 405 nm light over 30 s of irradiation with an estimated 8.2 µJ of mechanical work (10−4% efficiency). The initial focal length recovered after 60 s in the dark over three consecutive cycles of actuation. Additionally, the photoactuated response is shown to correlate well with the light intensity.

     
    more » « less
  3. Flat lenses with focal length tunability can enable the development of highly integrated imaging systems. This work explores machine learning to inverse design a multifocal multilevel diffractive lens (MMDL) by wavelength multiplexing. The MMDL output is multiplexed in three color channels, red (650 nm), green (550 nm), and blue (450 nm), to achieve varied focal lengths of 4 mm, 20 mm, and 40 mm at these three color channels, respectively. The focal lengths of the MMDL scale significantly with the wavelength in contrast to conventional diffractive lenses. The MMDL consists of concentric rings with equal widths and varied heights. The machine learning method is utilized to optimize the height of each concentric ring to obtain the desired phase distribution so as to achieve varied focal lengths multiplexed by wavelengths. The designed MMDL is fabricated through a direct-write laser lithography system with gray-scale exposure. The demonstrated singlet lens is miniature and polarization insensitive, and thus can potentially be applied in integrated optical imaging systems to achieve zooming functions.

     
    more » « less
  4. The majority of optical lenses have spherical surface profiles because they are convenient to fabricate. Replacing spherical optics with aspheric optics leads to smaller size, lighter weight, and less complicated optical systems with a superior imaging quality. However, fabrication of aspheric lenses is expensive and time-consuming. Here, we introduce a straightforward and low-cost casting method to fabricate polymeric aspheric lenses. An elastomeric ferrogel was formed into an aspherical profile by using a designed magnetic field and then was used as a mold. Different types of aspherical profiles from parabola to hyperbola can be formed with this method by tuning the magnetic field. A home-built Shack–Hartmann sensor was employed to characterize the cast polymeric lenses. The effects of magnetic field intensity, gradient of the magnetic field, and magnetic susceptibility of the ferrogel on the lens profiles were investigated. This technique can be used for rapid-forming polymeric aspherical lenses with different sizes and shapes.

     
    more » « less
  5. Khoo, Iam Choon (Ed.)
    Lenses with tunable focal lengths play important roles in nature as well as modern technologies. In recent years, the demand for electrically tunable lenses and lens arrays has grown, driven by the increasing interest in augmented and virtual reality, as well as sensing applications. In this paper, we present a novel type of electrically tunable microlens utilizing polymer-stabilized chiral ferroelectric nematic liquid crystal. The lens offers a fast response time (5ms) and the focal length can be tuned by applying an in-plane electric field. The electrically induced change in the lens shape, facilitated by the remarkable sensitivity of the chiral ferroelectric nematic to electric fields, enables the tunable focal length capability. The achieved performance of this lens represents a significant advancement compared to electrowetting-based liquid lenses and opens exciting prospects in various fields, including biomimetic optics, security printing, solar energy concentration, and AR/VR devices. 
    more » « less