Abstract The detached trans-Neptunian objects (TNOs) are those with semimajor axes beyond the 2:1 resonance with Neptune that are neither resonant nor scattering. Using the detached sample from the Outer Solar System Origins Survey (OSSOS) telescopic survey, we produce the first studies of their orbital distribution based on matching the orbits and numbers of the known TNOs after accounting for survey biases. We show that the detached TNO perihelion ( q ) distribution cannot be uniform but is instead better matched by two uniform components with a break near q ≈ 40 au. We produce parametric two-component models that are not rejectable by the OSSOS data set and estimate that there are 36,000 − 9000 + 12 , 000 detached TNOs with absolute magnitudes H r < 8.66 ( D ≳ 100 km) and semimajor axes 48 au < a < 250 au (95% confidence limits). Although we believe that these heuristic two-parameter models yield a correct population estimate, we then use the same methods to show that the perihelion distribution of a detached disk created by a simulated rogue planet matches the q distribution even better, suggesting that the temporary presence of other planets in the early solar system is a promising model to create today’s large semimajor axis TNO population. This cosmogonic simulation results in a detached TNO population estimate of 48,000 − 12 , 000 + 15 , 000 . Because this illustrates how difficult-to-detect q > 50 au objects are likely present, we conclude that there are (5 ± 2) × 10 4 dynamically detached TNOs, roughly twice as many as in the entire trans-Neptunian hot main belt.
more »
« less
No Evidence for Orbital Clustering in the Extreme Trans-Neptunian Objects
Abstract The apparent clustering in longitude of perihelionϖand ascending node Ω of extreme trans-Neptunian objects (ETNOs) has been attributed to the gravitational effects of an unseen 5–10 Earth-mass planet in the outer solar system. To investigate how selection bias may contribute to this clustering, we consider 14 ETNOs discovered by the Dark Energy Survey, the Outer Solar System Origins Survey, and the survey of Sheppard and Trujillo. Using each survey's published pointing history, depth, and TNO tracking selections, we calculate the joint probability that these objects are consistent with an underlying parent population with uniform distributions inϖand Ω. We find that the mean scaled longitude of perihelion and orbital poles of the detected ETNOs are consistent with a uniform population at a level between 17% and 94% and thus conclude that this sample provides no evidence for angular clustering.
more »
« less
- PAR ID:
- 10362302
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Planetary Science Journal
- Volume:
- 2
- Issue:
- 2
- ISSN:
- 2632-3338
- Format(s):
- Medium: X Size: Article No. 59
- Size(s):
- Article No. 59
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The most distant known trans-Neptunian objects (TNOs), those with perihelion distance above 38 au and semimajor axis above 150 au, are of interest for their potential to reveal past, external, or present but unseen perturbers. Realizing this potential requires understanding how the known planets influence their orbital dynamics. We use a recently developed Poincaré mapping approach for orbital phase space studies of the circular planar restricted three-body problem, which we have extended to the case of the 3D restricted problem withNplanetary perturbers. With this approach, we explore the dynamical landscape of the 23 most distant TNOs under the perturbations of the known giant planets. We find that, counter to common expectations, almost none of these TNOs are far removed from Neptune’s resonances. Nearly half (11) of these TNOs have orbits consistent with stable libration in Neptune’s resonances; in particular, the orbits of TNOs 148209 and 474640 overlap with Neptune’s 20:1 and 36:1 resonances, respectively. Five objects can be ruled currently nonresonant, despite their large orbital uncertainties, because our mapping approach determines the resonance boundaries in angular phase space in addition to semimajor axis. Only three objects are in orbital regions not appreciably affected by resonances: Sedna, 2012 VP113 and 2015 KG163. Our analysis also demonstrates that Neptune’s resonances impart a modest (few percent) nonuniformity in the longitude of perihelion distribution of the currently observable distant TNOs. While not large enough to explain the observed clustering, this small dynamical sculpting of the perihelion longitudes could become relevant for future, larger TNO data sets.more » « less
-
Abstract We have discovered evidence of cometary activity originating from (551023) 2012 UQ192(alternately designated 2019 SN40), which we dynamically classify as a Jupiter Family Comet (JFC). JFCs have eccentric Jupiter-crossing orbits and originate in the Kuiper Belt. Analysis of these objects can provide vital information about minor planets in the outer solar system, such as the distribution of volatiles within the solar system. Activity on 2012 UQ192was first recognized by volunteers on our NASA Partner Citizen Science projectActive Asteroids. Through our own examination of archival image data, we found a total of ∼30 images presenting strong evidence of activity near perihelion during two separate orbits. 2012 UQ192is notable as we found it to be recurrently active. When 2012 UQ192approaches its perihelion passage in 2027 September, we predict it will reactivate and will be a prime subject for follow-up observations.more » « less
-
Abstract Trans-Neptunian objects provide a window into the history of the solar system, but they can be challenging to observe due to their distance from the Sun and relatively low brightness. Here we report the detection of 75 moving objects that we could not link to any other known objects, the faintest of which has a VR magnitude of 25.02 ± 0.93 using the Kernel-Based Moving Object Detection (KBMOD) platform. We recover an additional 24 sources with previously known orbits. We place constraints on the barycentric distance, inclination, and longitude of ascending node of these objects. The unidentified objects have a median barycentric distance of 41.28 au, placing them in the outer solar system. The observed inclination and magnitude distribution of all detected objects is consistent with previously published KBO distributions. We describe extensions to KBMOD, including a robust percentile-based lightcurve filter, an in-line graphics-processing unit filter, new coadded stamp generation, and a convolutional neural network stamp filter, which allow KBMOD to take advantage of difference images. These enhancements mark a significant improvement in the readiness of KBMOD for deployment on future big data surveys such as LSST.more » « less
-
ABSTRACT Consistent with the notion that most Sun-like stars form in multistellar systems, this study explores the impact of a temporarily bound stellar binary companion on the early dynamical evolution of the Solar system. Using N-body simulations, we illustrate how such a companion markedly enhances the trapping of scattered bodies on inner Oort cloud-like orbits, with perihelion distances exceeding $$q \gt 40$$ au. We further find that the orbital geometry of the Sun-binary system plays a central role in regulating the efficiency of small-body implantation on to high-perihelion orbits, and demonstrate that this process is driven by the von Zeipel–Kozai–Lidov mechanism. Incorporating the transiency of stellar clusters and the eventual Sun-binary pair dissociation due to passing stars, we show how the binary can be stripped away by an approximately solar-mass ejector star, with only a modest impact on the generated inner Oort cloud population. Collectively, our results highlight a previously underappreciated process that could have contributed to the formation of the inner Oort cloud.more » « less
An official website of the United States government
