skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Constructing STEM identity: An expanded structural model for STEM identity research
Abstract Identity development frameworks provide insight into why and to what extent individuals engage in STEM‐related activities. While studies of “STEM identity” often build off previously validated disciplinary and/or science identity frameworks, quantitative analyses of constructs that specifically measure STEM identity and its antecedents are scarce, making it challenging for researchers or practitioners to apply a measurement‐based perspective of participation in opportunities billed as “STEM.” In this study, we tested two expanded structural equation models of STEM identity development, building off extensions of science and disciplinary‐identity frameworks, that incorporated additional factors relevant to identity development: gender, ethnicity, home science support, parental education, and experiencing science talk in the home. Our models test theorized relationships between interest, sense of recognition, performance‐competence, and identity in the context of STEM with undergraduate students (N = 522) enrolled in introductory STEM courses at a Hispanic Serving Institution. Our findings support our measurement of STEM identity and its indicators, providing researchers with a predictive model associated with academic intentions across disciplinary domains in STEM. Further, our expanded model (i.e., Model I+) indicates significant contributions of participant gender, which has a larger indirect effect on STEM identity (β = 0.50) than the direct effect of STEM interest (β = 0.29), and of home support in relation to performance‐competence in academic contexts. Our model also posits a significant contribution of family science talk to sense of recognition as a STEM person, expanding our understandings of the important role of the home environment while challenging prior conceptions of science capital and habitus. We situate our results within a broader discussion regarding the validity of “STEM identity” as a concept and construct in the context of communities often marginalized in STEM fields.  more » « less
Award ID(s):
1846167
PAR ID:
10362391
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Research in Science Teaching
Volume:
59
Issue:
3
ISSN:
0022-4308
Page Range / eLocation ID:
p. 458-490
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Offerdahl, Erika (Ed.)
    Despite the wealth of research exploring science, technology, engineering, and mathematics (STEM) identity and career goals in both formal and informal settings, existing literature does not consider STEM identity for undergraduate students pursuing health and medical careers through STEM pathways. We address this gap by examining the STEM identity of undergraduate STEM majors on pre-med/health tracks as it compares with that of other STEM majors, thus focusing on a population that is chronically understudied in STEM education research. We surveyed 440 undergraduate STEM students enrolled in entry-level STEM courses to assess their STEM identities and three identity precursors: interest, performance–competence, and recognition. Through regression analyses accounting for gender, major, and perceived home support around STEM, we found that pre-med/health students were more likely to have higher STEM identity and recognition scores than their peers; we did not detect a significant difference for performance–competence or interest in STEM. Although there is little tracking of pre-med/health students’ ultimate career attainment, the implications of our findings support a potential for sustaining pre-med/health students while simultaneously creating pathways to other STEM pursuits for the nearly 60% of those who do not enter medical school by offering participation in experiences that affirm their STEM identities. 
    more » « less
  2. S-STEM scholarships are provided to academically talented low-income engineering students with the intent of increasing retention as well as successful transfer and subsequent graduation rates for a bachelor's degree in an Engineering or Computer Science (ECS) field. Since the spring of 2020, 71 unique students have been awarded scholarships. At this time, there are 22 active scholars, 34 have already successfully transferred to complete their ECS degree and a quarter of those scholars have since graduated. Beyond the financial support, NSF S-STEM programs center on providing academic, social and professional development. In addition, the research component of this program at a midwestern HSI community college is exploring the following questions: Do students recognize themselves as engineers prior to transfer? Do students feel a sense of belonging in their Engineering and Computer Science programs? Does being an NSF S-STEM Scholar impact either of these outcomes? The importance of developing a strong engineering identity as an indicator of persistence to degree completion has been the focus of considerable research over the last fifteen years. However, there is limited understanding of how community college experiences influence engineering identity development. Since the spring of 2020, students have been completing surveys during the first six weeks of the fall semester and during the last four weeks of the spring semester. Engineering identity was explored with questions centered on interest, recognition and competence as well as self-efficacy in skills such as tinkering, design and experimentation. Sense of belonging indicators were examined in terms of inclusion, sense of belonging to the community and sense of belonging to their major. This paper will provide quantitative analysis of the data examining outcomes based on demographics including ethnicity, gender, scholar status and length of time in the program. 
    more » « less
  3. This Research Full Paper presents the effects of computing identity sub-constructs on the persistence of computer science students. Computer science (CS) is one of the fastest growing disciplines in the world and an emerging critical field for all students to obtain vital skills to be successful in the 21st century. Despite the growing importance of computer science, many university and college programs suffer from low student persistence rates. Disciplinary identity is a theoretical framework that refers to how students see themselves with respect to a discipline and is related to long-term membership in a disciplinary community. The theory has been effectively applied in Science, Technology, Engineering, and Mathematics (STEM) to understand students' success and persistence. This study examines the effects of performance/competence, recognition, interest and sense of belonging on the academic persistence of computer science students. A survey of approximately 1,640 computing students as part of a National Science Foundation (NSF) funded project was developed and administered at three metropolitan public institutions. Confirmatory Factor Analysis (CFA) was performed to validate the sub-constructs of identity for use in a computing identity model. Then, a structural equation model (SEM) was constructed as a snapshot of the structural relationships for describing and quantifying the impact of the identity subconstructs on persistence. The results indicated that our model for CS aligns with prior research on disciplinary identity but also adds the importance of sense of belonging. In addition, the findings indicate that students' academic persistence is directly influenced by their interest. A better understanding of these factors may leverage insight into students’ academic persistence in computer science/engineering programs as well as a meaningful lens of analysis for further curriculum and extracurricular activities. 
    more » « less
  4. Seagroves, Scott; Barnes, Austin; Metevier, Anne; Porter, Jason; Hunter, Lisa (Ed.)
    Research suggests that developing an identity as a person in STEM is necessary for learners from marginalized groups to persist in STEM education and careers. These learners may perceive that their race, gender, or other characteristics make it difficult for their peers and supervisors to recognize them as scientists or engineers, thus disrupting their ability to maintain successful degree progress and to pursue their STEM career aspirations. Here we discuss the specific ways we designed inquiry workshops to not only clarify difficult core STEM content, but to also promote learners’ competence, performance, and targeted recognition as scientists. Our workshops were designed for students interested in chemistry, climate science, physics, and toxicology at the University of California, Santa Cruz (UCSC), Workshops for Engineering & Science Transfers (WEST) 2019 program. In designing our workshops, we focused on promoting the scientific identities of our learners by incorporating authentic ways for students to receive recognition from both peers and instructional facilitators, as well as allowing students to tap into their own personal interests and values. Insights from our designed assessments for learners’ understanding of our content demonstrate the success of our initiatives and provide further areas of improvement. Our goals are to create inclusive workshops to support students from all backgrounds, with emphasis on underrepresented backgrounds (community college, first generation, students of color, women, and LGBTQ+ students, etc.) as well as support them in other contexts, such as when mentoring STEM students in academic laboratory settings. 
    more » « less
  5. Abstract How individuals come to perceive themselves in STEM is predicated on their understanding of what it means to be a member of the STEM community. This association is consequential when considering the perpetuation of white male ownership of STEM knowledge and power that forces learners identifying with groups systemically marginalized by racial and gender discrimination to adopt particular norms, values, and behaviors to gain recognition. In effect, these expectations help to maintain masculinized Discourses as STEM professionals are encultured to apply the same recognition criteria to which they were judged themselves. We examine how these Discourses are maintained even as learners who identify with groups that carry histories of systemic marginalization by racist, sexist, and elitist practices gain access to STEM communities. Specifically, we explore how university STEM students attending a Hispanic Serving Institution in the United States articulate gendered expectations of STEM membership through their characterization of themselves and others as (not) STEM people. Drawing from theories in Discourse, social identity, and feminist critiques of science, we describe how students implicitly recognize STEM identity in gendered ways. We discuss how our findings illuminate the mechanisms by which STEM recognition is afforded by pointing to its dependence on masculinized displays of STEM performances, competence, and interests, leading to a cycle of marginalization as learners are encultured to perpetuate existing STEM Discourses in their recognition of others. We discuss research implications for measurements of STEM identity that do not account for gendered Discourses and offer practical implications for the design of learning experiences that co‐opt existing Discourses to inoculate gendered perceptions of a STEM person prototype. Lastly, we present a case for elevating the role of maternal caregivers and family immigration histories in STEM identity construction. 
    more » « less