skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Backbone flexibility on conjugated polymer's crystallization behavior and thin film mechanical stability
Abstract Extensive efforts have been made to develop flexible electronics with conjugated polymers that are intrinsically stretchable and soft. We recently systematically investigated the influence of conjugation break spacers (CBS) on the thermomechanical properties of a series n‐type naphthalene diimide‐based conjugated polymer and found that CBS can significantly reduce chain rigidity, melting point, as well as glass transition temperature. In the current work, we further examined the influence of CBS on the crystallization behaviors of PNDI‐C3 to C6, including isothermal crystallization kinetics, crystal polymorphism and subsequently time‐dependent modulus, in a holistic approach using differential scanning calorimetry, X‐ray scattering, polarized optical microscopy, atomic force microscopy, and pseudo‐free‐standing tensile test. Results demonstrate that increasing the length of CBS increases the crystallization half‐time by 1 order of magnitude from PNDI‐C3 to PNDI‐C6 from approximately 103to 104 s. The crystallization rate shows a bimodal dependence on the temperature due to the presence of different polymorphs. In addition, crystallization significantly affects the mechanical response, a stiffening in the modulus of nearly three times is observed for PNDI‐C5 when annealed at room temperature for 12 h. Crystallization kinetic is also influenced by molecular weight (MW). Higher MW PNDI‐C3 crystallizes slower. In addition, an odd–even effect was observed below 50°C, odd‐number PNDI‐Cxs (C3 and C5) crystallize slower than the adjacent even‐numbered PNDI‐Cxs (C4 and C6). Our work provides an insight to design flexible electronics by systematically tuning the mechanical properties through control of polymer crystallization by tuning backbone rigidity.  more » « less
Award ID(s):
2047689 1757220
PAR ID:
10362393
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Polymer Science
Volume:
60
Issue:
3
ISSN:
2642-4150
Page Range / eLocation ID:
p. 548-558
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cervical laminoplasty is a valuable procedure for myelopathy but it is associated with complications such as increased kyphosis. The effect of ligament damage during cervical laminoplasty on biomechanics is not well understood. We developed the C2–C7 cervical spine finite element model and simulated C3–C6 double-door laminoplasty. Three models were created (a) intact, (b) laminoplasty-pre (model assuming that the ligamentum flavum (LF) between C3–C6 was preserved during surgery), and (c) laminoplasty-res (model assuming that the LF between C3–C6 was resected during surgery). The models were subjected to physiological loading, and the range of motion (ROM), intervertebral nucleus stress, and facet contact forces were analyzed under flexion/extension, lateral bending, and axial rotation. The maximum change in ROM was observed under flexion motion. Under flexion, ROM in the laminoplasty-pre model increased by 100.2%, 111.8%, and 98.6% compared to the intact model at C3–C4, C4–C5, and C5–C6, respectively. The ROM in laminoplasty-res further increased by 105.2%, 116.8%, and 101.8% compared to the intact model at C3–C4, C4–C5, and C5–C6, respectively. The maximum stress in the annulus/nucleus was observed under left bending at the C4–C5 segment where an increase of 139.5% and 229.6% compared to the intact model was observed for laminoplasty-pre and laminoplasty-res model, respectively. The highest facet contact forces were observed at C4–C5 under axial rotation, where an increase of 500.7% and 500.7% was observed compared to the intact model for laminoplasty-pre and laminoplasty-res, respectively. The posterior ligaments of the cervical spine play a vital role in restoring/stabilizing the cervical spine. When laminoplasty is performed, the surgeon needs to be careful not to injure the posterior soft tissue, including ligaments such as LF. 
    more » « less
  2. Abstract Organic semiconducting donor–acceptor polymers are promising candidates for stretchable electronics owing to their mechanical compliance. However, the effect of the electron‐donating thiophene group on the thermomechanical properties of conjugated polymers has not been carefully studied. Here, thin‐film mechanical properties are investigated for diketopyrrolopyrrole (DPP)‐based conjugated polymers with varying numbers of isolated thiophene moieties and sizes of fused thiophene rings in the polymer backbone. Interestingly, it is found that these thiophene units act as an antiplasticizer, where more isolated thiophene rings or bigger fused rings result in an increased glass transition temperature (Tg) of the polymer backbone, and consequently elastic modulus of the respective DPP polymers. Detailed morphological studies suggests that all samples show similar semicrystalline morphology. This antiplasticization effect also exists inpara‐azaquinodimethane‐based conjugated polymers, indicating that this can be a general trend for various conjugated polymer systems. Using the knowledge gained above, a new DPP‐based polymer with increased alkyl side chain density through attaching alky chains to the thiophene unit is engineered. The new DPP polymer demonstrates a record lowTg, and 50% lower elastic modulus than a reference polymer without side‐chain decorated on the thiophene unit. This work provides a general design rule for making low‐Tgconjugated polymers for stretchable electronics. 
    more » « less
  3. Abstract Conjugated polymers consist of complex backbone structures and side‐chain moieties to meet various optoelectronic and processing requirements. Recent work on conjugated polymers has been devoted to studying the mechanical properties and developing new conjugated polymers with low modulus and high‐crack onset strain, while the thin film mechanical stability under long‐term external tensile strain is less investigated. Here we performed direct mechanical stress relaxation tests for both free‐standing and thin film floated on water surface on both high‐Tgand low‐Tgconjugated polymers, as well as a reference nonconjugated sample, polystyrene. We measured thin films with a range of film thickness from 38 to 179 nm to study the temperature and thickness effect on thin film relaxation, where an apparent enthalpy–entropy compensation effect for glassy polymer PS and PM6 thin films was observed. We also compared relaxation times across three different conjugated polymers and showed that both crystalline morphology and higher modulus reduce the relaxation rate besides higher glass transition temperature. Our work provides insights into the mechanical creep behavior of conjugated polymers, which will have an impact on the future design of stable functional organic electronics. 
    more » « less
  4. The availability of water-soluble nanoparticles allows catalytic reactions to occur in highly desirable green environments. The catalytic activity and selectivity of water-soluble palladium nanoparticles capped with 6-(carboxylate)hexanethiolate (C6-PdNP) and 5-(trimethylammonio)pentanethiolate (C5-PdNP) were investigated for the reduction of 4-nitrophenol, the oxidation of α,β-conjugated aldehydes, and the C-C coupling of phenylboronic acid. The study showed that between the two PdNPs, C6-PdNP exhibits better catalytic activity for the reduction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride and the selective oxidation of conjugated aldehydes to conjugated carboxylic acids. For the latter reaction, molecular hydrogen (H2) and H2O act as oxidants for the surface palladium atoms on PdNPs and conjugated aldehyde substrates, respectively. The results indicated that the competing addition activities of Pd-H and H2O toward the π-bond of different unsaturated substrates promote either reduction or oxidation reactions under mild conditions in organic solvent-free environments. In comparison, C5-PdNP exhibited higher catalytic activity for the C-C coupling of phenylboronic acid. Gas chromatography–mass spectrometry (GC-MS) was mainly used as an analytical technique to examine the products of catalytic reactions. 
    more » « less
  5. Abstract The dissimilarity of material composition in existing stretchable electronics and biological organisms is a key bottleneck, still yet to be resolved, toward seamless integration between stretchable electronics and biological species. For instance, human or animal tissues and skins are fully made out of soft polymer species, while existing stretchable electronics are composed of rigid inorganic materials, either purely or partially. Soft stretchable electronics fully made out of polymeric materials with intrinsic softness and stretchability are sought after and therefore proposed to address this technical challenge. Here, rubbery electronics and sensors fully made out of stretchable polymeric materials including all‐polymer rubbery transistors, sensors, and sensory skin, which have similar material composition to biology, are reported. The fabricated all‐polymer rubbery transistors exhibit field‐effect mobility of 1.11 cm2V‐1s‐1and retain their transistor performance even under mechanical stretch of 30%. In addition, all‐polymer rubbery strain and temperature sensors are demonstrated with high gauge factor and good temperature sensing capability. Based on these all‐polymer rubbery electronics, an active‐matrix multiplexed sensory skin on a robotic hand is demonstrated to illustrate one of the applications. 
    more » « less