skip to main content

Title: Effects of direct current bias on nucleation density of superhard boron-rich boron carbide films made by microwave plasma chemical vapor deposition

We report bias enhanced nucleation and growth of boron-rich deposits through systematic study of the effect of a negative direct current substrate bias during microwave plasma chemical vapor deposition. The current flowing through a silicon substrate with an applied bias of −250 V was investigated for a feedgas containing fixed hydrogen (H2) flow rate but with varying argon (Ar) flow rates for 1330, 2670, and 4000 Pa chamber pressure. For 1330 and 2670 Pa, the bias current goes through a maximum with increasing Ar flow rate. This maximum current also corresponds to a peak in substrate temperature. However, at 4000 Pa, no maximum in bias current or substrate temperature is observed for the range of argon flow rates tested. Using these results, substrate bias pre-treatment experiments were performed at 1330 Pa in an Ar/H2plasma, yielding the maximum bias current. Nucleation density of boron deposits were measured after subsequent exposure to B2H6in H2plasma and found to be a factor of 200 times higher than when no bias and no Ar was used. Experiments were repeated at 2670 and 4000 Pa (fixed bias voltage and Ar flow rate) in order to test the effect of chamber pressure on the nucleation density. Compared to 4000 Pa, we find nearly 7 times higher boron nucleation densities for both 1330 and 2670 Pa when the substrate was negatively biased in the Ar/H2plasma. Results are explained by incorporating measurements of plasma optical emission and by use of heterogeneous nucleation theory. The optimal conditions at 1330 Pa for nucleation were used to grow boron-rich amorphous films with measured hardness as high as 58 GPa, well above the 40 GPa threshold for superhardness.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Materials Research Express
Page Range / eLocation ID:
Article No. 046401
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A microwave plasma chemical vapor deposition system was used to synthesize cubic boron nitride (cBN) coatings on diamond seeded silicon substrates using direct current (DC) bias. Effects of the argon (Ar) flow rate and bias voltage on the growth of the cBN coatings were investigated. Hydrogen (H2), argon (Ar), a mixture of diborane in H2 (95% H2, 5% B2H6), and N2 were used in the feed gas. A DC bias system was used for external biasing of the sample, which facilitates the goal of achieving sp3 bonded cBN. Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS) revealed the existence of sp3-bonded BN in the produced samples. With increasing Ar flow, the cBN content in the coating increases and reaches a maximum at the maximum Ar flow of 400 SCCM used in this study. High-resolution XPS scans for B1s and N1s indicate that the deposited coating contains more than 70% cBN. This study demonstrates that energetic argon ions generated in a microwave-induced plasma significantly increase cBN content in the coating. 
    more » « less
  2. Boron nitride (BN) is primarily a synthetically produced advanced ceramic material. It is isoelectronic to carbon and, like carbon, can exist as several polymorphic modifications. Microwave plasma chemical vapor deposition (MPCVD) of metastable wurtzite boron nitride is reported for the first time and found to be facilitated by the application of direct current (DC) bias to the substrate. The applied negative DC bias was found to yield a higher content of sp3 bonded BN in both cubic and metastable wurtzite structural forms. This is confirmed by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). Nano-indentation measurements reveal an average coating hardness of 25 GPa with some measurements as high as 31 GPa, consistent with a substantial fraction of sp3 bonding mixed with the hexagonal sp2 bonded BN phase. 
    more » « less
  3. Cubic boron nitride (c-BN), with a small 1.4% lattice mismatch with diamond, presents a heterostructure with multiple opportunities for electronic device applications. However, the formation of c-BN/diamond heterostructures has been limited by the tendency to form hexagonal BN at the interface. In this study, c-BN has been deposited on free standing polycrystalline and single crystal boron-doped diamond substrates via electron cyclotron resonance plasma enhanced chemical vapor deposition (ECR-PECVD), employing fluorine chemistry. In situ x-ray photoelectron spectroscopy (XPS) is used to characterize the nucleation and growth of boron nitride (BN) films as a function of hydrogen gas flow rates during deposition. The PECVD growth rate of BN was found to increase with increased hydrogen gas flow. In the absence of hydrogen gas flow, the BN layer was reduced in thickness or etched. The XPS results show that an excess of hydrogen gas significantly increases the percent of sp2 bonding, characteristic of hexagonal BN (h-BN), particularly during initial layer growth. Reducing the hydrogen flow, such that hydrogen gas is the limiting reactant, minimizes the sp2 bonding during the nucleation of BN. TEM results indicate the partial coverage of the diamond with thin epitaxial islands of c-BN. The limited hydrogen reaction is found to be a favorable growth environment for c-BN on boron-doped diamond.

    more » « less
  4. Microwave plasma chemical vapor deposition (MPCVD) was used to diffuse boron into tantalum using plasma initiated from a feedgas mixture containing hydrogen and diborane. The role of substrate temperature and substrate bias in influencing surface chemical structure and hardness was investigated. X-ray diffraction shows that increased temperature results in increased TaB 2 formation (relative to TaB) along with increased strain in the tantalum body-centered cubic lattice. Once the strained tantalum becomes locally supersaturated with boron, TaB and TaB 2 precipitate. Additional boron remains in a solid solution within the tantalum. The combination of precipitation and solid solution hardening along with boron-induced lattice strain may help explain the 40 GPa average hardness measured by nanoindentation. Application of negative substrate bias did not further increase the hardness, possibly due to etching from increased ion bombardment. These results show that MPCVD is a viable method for synthesis of superhard borides based on plasma-assisted diffusion. 
    more » « less
  5. Abstract

    Here, an environmentally‐friendly and scalable process is reported to synthesize reduced graphene oxide (RGO) thin films for printed electronics applications. The films are produced by inkjet printing GO flakes dispersed binder‐free in aqueous solutions followed by treatment with a nonthermal, radio‐frequency (RF) plasma containing only argon (Ar) gas. The plasma process is found to heat the substrate to temperatures no greater than 138 °C, enabling RGO to be printed directly on a wide range of temperature‐sensitive substrate materials including photo paper. Unlike other low‐temperature methods such as electrochemical reduction, plasma reduction is friendly to moisture absorbent materials. Moreover, the plasma treatment can be performed on nonconducting substrates, eliminating the need for film transfer. From an applications perspective, the printed, plasma‐reduced RGO exhibits excellent electrical, mechanical, and electrochemical properties. As a technology demonstrator, the working electrodes of hydrogen peroxide (H2O2) sensors fabricated from plasma‐reduced GO show a sensitivity of 277 ± 80 µA mm−1cm−2, which is comparable to RGO working electrodes made by electrochemical reduction.

    more » « less