skip to main content


Title: A Matched Survey for the Enigmatic Low Radio Frequency Transient ILT J225347+862146
Abstract

Discovered in 2011 with LOFAR, the 15 Jy low-frequency radio transient ILT J225347+862146 heralds a potentially prolific population of radio transients at <100 MHz. However, subsequent transient searches in similar parameter space yielded no detections. We test the hypothesis that these surveys at comparable sensitivity have missed the population due to mismatched survey parameters. In particular, the LOFAR survey used only 195 kHz of bandwidth at 60 MHz, while other surveys were at higher frequencies or had wider bandwidth. Using 137 hr of all-sky images from the Owens Valley Radio Observatory Long Wavelength Array, we conduct a narrowband transient search at ∼10 Jy sensitivity with timescales from 10 minutes to 1 day and a bandwidth of 722 kHz at 60 MHz. To model the remaining survey selection effects, we introduce a flexible Bayesian approach for inferring transient rates. We do not detect any transient and find compelling evidence that our nondetection is inconsistent with the detection of ILT J225347+862146. Under the assumption that the transient is astrophysical, we propose two hypotheses that may explain our nondetection. First, the transient population associated with ILT J225347+862146 may have a low all-sky density and display strong temporal clustering. Second, ILT J225347+862146 may be an extreme instance of the fluence distribution, of which we revise the surface density estimate at 15 Jy to 1.1 × 10−7deg−2with a 95% credible interval of (3.5 × 10−12, 3.4 × 10−7) deg−2. Finally, we find a previously identified object coincident with ILT J225347+862146 to be an M dwarf at 420 pc.

 
more » « less
Award ID(s):
1654815 1828784
NSF-PAR ID:
10362453
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
925
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 171
Size(s):
["Article No. 171"]
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    The population of radio-loud stars has to date been studied primarily through either targeted observations of a small number of highly active stars or wide-field, single-epoch surveys that cannot easily distinguish stellar emission from background extragalactic sources. As a result it has been difficult to constrain population statistics such as the surface density and fraction of the population producing radio emission in a particular variable or spectral class. In this paper, we present a sample of 36 radio stars detected in a circular polarization search of the multi-epoch Variables and Slow Transients (VAST) pilot survey with ASKAP at 887.5 MHz. Through repeat sampling of the VAST pilot survey footprint we find an upper limit to the duty cycle of M-dwarf radio bursts of $8.5 \,\rm {per\,cent}$, and that at least 10 ± 3 $\rm {per\,cent}$ of the population should produce radio bursts more luminous than $10^{15} \,\rm {erg}\mathrm{s}^{-1} \,\mathrm{Hz}^{-1}$. We infer a lower limit on the long-term surface density of such bursts in a shallow $1.25 \,\mathrm{m}\rm {Jy}\rm\ {PSF}^{-1}$ sensitivity survey of ${9}^{\, +{11}}_{-{7}}\times 10^{-3}$  $\,\deg ^{-2}$ and an instantaneous radio star surface density of 1.7 ± 0.2 × 10−3  $\,\deg ^{-2}$ on 12 min time-scales. Based on these rates we anticipate ∼200 ± 50 new radio star detections per year over the full VAST survey and ${41\, 000}^{\, +{10\, 000}}_{-{9\, 000}}$ in next-generation all-sky surveys with the Square Kilometre Array.

     
    more » « less
  2. Abstract

    We present a catalog of 536 fast radio bursts (FRBs) detected by the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst (CHIME/FRB) Project between 400 and 800 MHz from 2018 July 25 to 2019 July 1, including 62 bursts from 18 previously reported repeating sources. The catalog represents the first large sample, including bursts from repeaters and nonrepeaters, observed in a single survey with uniform selection effects. This facilitates comparative and absolute studies of the FRB population. We show that repeaters and apparent nonrepeaters have sky locations and dispersion measures (DMs) that are consistent with being drawn from the same distribution. However, bursts from repeating sources differ from apparent nonrepeaters in intrinsic temporal width and spectral bandwidth. Through injection of simulated events into our detection pipeline, we perform an absolute calibration of selection effects to account for systematic biases. We find evidence for a population of FRBs—composing a large fraction of the overall population—with a scattering time at 600 MHz in excess of 10 ms, of which only a small fraction are observed by CHIME/FRB. We infer a power-law index for the cumulative fluence distribution ofα=1.40±0.11(stat.)0.09+0.06(sys.), consistent with the −3/2 expectation for a nonevolving population in Euclidean space. We find thatαis steeper for high-DM events and shallower for low-DM events, which is what would be expected when DM is correlated with distance. We infer a sky rate of[820±60(stat.)200+220(sys.)]/sky/dayabove a fluence of 5 Jy ms at 600 MHz, with a scattering time at 600 MHz under 10 ms and DM above 100 pc cm−3.

     
    more » « less
  3. ABSTRACT

    Covering $\sim 5600\, \deg ^2$ to rms sensitivities of ∼70−100 $\mu$Jy beam−1, the LOFAR Two-metre Sky Survey Data Release 2 (LoTSS-DR2) provides the largest low-frequency (∼150 MHz) radio catalogue to date, making it an excellent tool for large-area radio cosmology studies. In this work, we use LoTSS-DR2 sources to investigate the angular two-point correlation function of galaxies within the survey. We discuss systematics in the data and an improved methodology for generating random catalogues, compared to that used for LoTSS-DR1, before presenting the angular clustering for ∼900 000 sources ≥1.5 mJy and a peak signal-to-noise ≥ 7.5 across ∼80 per cent of the observed area. Using the clustering, we infer the bias assuming two evolutionary models. When fitting angular scales of $0.5 \le \theta \lt 5{^\circ }$, using a linear bias model, we find LoTSS-DR2 sources are biased tracers of the underlying matter, with a bias of $b_{\rm C}= 2.14^{+0.22}_{-0.20}$ (assuming constant bias) and $b_{\rm E}(z=0)= 1.79^{+0.15}_{-0.14}$ (for an evolving model, inversely proportional to the growth factor), corresponding to $b_{\rm E}= 2.81^{+0.24}_{-0.22}$ at the median redshift of our sample, assuming the LoTSS Deep Fields redshift distribution is representative of our data. This reduces to $b_{\rm C}= 2.02^{+0.17}_{-0.16}$ and $b_{\rm E}(z=0)= 1.67^{+0.12}_{-0.12}$ when allowing preferential redshift distributions from the Deep Fields to model our data. Whilst the clustering amplitude is slightly lower than LoTSS-DR1 (≥2 mJy), our study benefits from larger samples and improved redshift estimates.

     
    more » « less
  4. MeerKAT’s large number (64) of 13.5 m diameter antennas, spanning 8 km with a densely packed 1 km core, create a powerful instrument for wide-area surveys, with high sensitivity over a wide range of angular scales. The MeerKAT Galaxy Cluster Legacy Survey (MGCLS) is a programme of long-track MeerKAT L -band (900−1670 MHz) observations of 115 galaxy clusters, observed for ∼6−10 h each in full polarisation. The first legacy product data release (DR1), made available with this paper, includes the MeerKAT visibilities, basic image cubes at ∼8″ resolution, and enhanced spectral and polarisation image cubes at ∼8″ and 15″ resolutions. Typical sensitivities for the full-resolution MGCLS image products range from ∼3−5 μJy beam −1 . The basic cubes are full-field and span 2° × 2°. The enhanced products consist of the inner 1.2° × 1.2° field of view, corrected for the primary beam. The survey is fully sensitive to structures up to ∼10′ scales, and the wide bandwidth allows spectral and Faraday rotation mapping. Relatively narrow frequency channels (209 kHz) are also used to provide H  I mapping in windows of 0 <  z  < 0.09 and 0.19 <  z  < 0.48. In this paper, we provide an overview of the survey and the DR1 products, including caveats for usage. We present some initial results from the survey, both for their intrinsic scientific value and to highlight the capabilities for further exploration with these data. These include a primary-beam-corrected compact source catalogue of ∼626 000 sources for the full survey and an optical and infrared cross-matched catalogue for compact sources in the primary-beam-corrected areas of Abell 209 and Abell S295. We examine dust unbiased star-formation rates as a function of cluster-centric radius in Abell 209, extending out to 3.5 R 200 . We find no dependence of the star-formation rate on distance from the cluster centre, and we observe a small excess of the radio-to-100 μm flux ratio towards the centre of Abell 209 that may reflect a ram pressure enhancement in the denser environment. We detect diffuse cluster radio emission in 62 of the surveyed systems and present a catalogue of the 99 diffuse cluster emission structures, of which 56 are new. These include mini-halos, halos, relics, and other diffuse structures for which no suitable characterisation currently exists. We highlight some of the radio galaxies that challenge current paradigms, such as trident-shaped structures, jets that remain well collimated far beyond their bending radius, and filamentary features linked to radio galaxies that likely illuminate magnetic flux tubes in the intracluster medium. We also present early results from the H  I analysis of four clusters, which show a wide variety of H  I mass distributions that reflect both sensitivity and intrinsic cluster effects, and the serendipitous discovery of a group in the foreground of Abell 3365. 
    more » « less
  5. ABSTRACT We present two new radio continuum images from the Australian Square Kilometre Array Pathfinder (ASKAP) survey in the direction of the Small Magellanic Cloud (SMC). These images are part of the Evolutionary Map of the Universe (EMU) Early Science Project (ESP) survey of the Small and Large Magellanic Clouds. The two new source lists produced from these images contain radio continuum sources observed at 960 MHz (4489 sources) and 1320 MHz (5954 sources) with a bandwidth of 192 MHz and beam sizes of 30.0 × 30.0 arcsec2 and 16.3 × 15.1 arcsec2, respectively. The median root mean square (RMS) noise values are 186 $\mu$Jy beam−1 (960 MHz) and 165 $\mu$Jy beam−1 (1320 MHz). To create point source catalogues, we use these two source lists, together with the previously published Molonglo Observatory Synthesis Telescope (MOST) and the Australia Telescope Compact Array (ATCA) point source catalogues to estimate spectral indices for the whole population of radio point sources found in the survey region. Combining our ASKAP catalogues with these radio continuum surveys, we found 7736 point-like sources in common over an area of 30 deg2. In addition, we report the detection of two new, low surface brightness supernova remnant candidates in the SMC. The high sensitivity of the new ASKAP ESP survey also enabled us to detect the bright end of the SMC planetary nebula sample, with 22 out of 102 optically known planetary nebulae showing point-like radio continuum emission. Lastly, we present several morphologically interesting background radio galaxies. 
    more » « less