Abstract Magnetic fields of molecular clouds in the central molecular zone (CMZ) have been relatively under-observed at sub-parsec resolution. Here, we report JCMT/POL2 observations of polarized dust emission in the CMZ, which reveal magnetic field structures in dense gas at ∼0.5 pc resolution. The 11 molecular clouds in our sample include two in the western part of the CMZ (Sgr C and a farside cloud candidate), four around the Galactic longitude 0 (the 50 km s−1cloud, CO 0.02−0.02, theStone, and theSticksandStrawamong the Three Little Pigs), and five along the Dust Ridge (G0.253+0.016, clouds b, c, d, and e/f), for each of which we estimate the magnetic field strength using the angular dispersion function method. The morphologies of magnetic fields in the clouds suggest potential imprints of feedback from expanding Hiiregions and young massive star clusters. A moderate correlation between the total viral parameter versus the star formation rate (SFR) and the dense gas fraction of the clouds is found. A weak correlation between the mass-to-flux ratio and the SFR, and a weak anticorrelation between the magnetic field and the dense gas fraction are also found. Comparisons between magnetic fields and other dynamic components in clouds suggest a more dominant role of self-gravity and turbulence in determining the dynamical states of the clouds and affecting star formation at the studied scales.
more »
« less
Gravity versus Magnetic Fields in Forming Molecular Clouds
Abstract Magnetic fields are dynamically important in the diffuse interstellar medium. Understanding how gravitationally bound, star-forming clouds form requires modeling of the fields in a self-consistent, supernova-driven, turbulent, magnetized, stratified disk. We employ the FLASH magnetohydrodynamics code to follow the formation and early evolution of clouds with final masses of 3–8 × 103M⊙within such a simulation. We use the code’s adaptive mesh refinement capabilities to concentrate numerical resolution in zoom-in regions covering single clouds, allowing us to investigate the detailed dynamics and field structure of individual self-gravitating clouds in a consistent background medium. Our goal is to test the hypothesis that dense clouds are dynamically evolving objects far from magnetohydrostatic equilibrium. We find that the cloud envelopes are magnetically supported with field lines parallel to density gradients and flow velocity, as indicated by the histogram of relative orientations and other statistical measures. In contrast, the dense cores of the clouds are gravitationally dominated, with gravitational energy exceeding internal, kinetic, or magnetic energy and accelerations due to gravity exceeding those due to magnetic or thermal pressure gradients. In these regions, field directions vary strongly, with a slight preference toward being perpendicular to density gradients, as shown by three-dimensional histograms of relative orientation.
more »
« less
- Award ID(s):
- 1815461
- PAR ID:
- 10362455
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 925
- Issue:
- 2
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 196
- Size(s):
- Article No. 196
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Due to dust grain alignment with magnetic fields, dust polarization observations of far-infrared emission from cold molecular clouds are often used to trace magnetic fields, allowing a probe of the effects of magnetic fields on the star formation process. We present inferred magnetic field maps of the Pillars of Creation region within the larger M16 emission nebula, derived from dust polarization data in the 89 and 154μm continuum using the Stratospheric Observatory For Infrared Astronomy/High-resolution Airborne Wideband Camera. We derive magnetic field strength estimates using the Davis–Chandrasekhar–Fermi method. We compare the polarization and magnetic field strengths to column densities and dust continuum intensities across the region to build a coherent picture of the relationship between star-forming activity and magnetic fields in the region. The projected magnetic field strengths derived are in the range of ∼50–130μG, which is typical for clouds of similarn(H2), i.e., molecular hydrogen volume density on the order of 104–105cm−3. We conclude that star formation occurs in the finger tips when the magnetic fields are too weak to prevent radial collapse due to gravity but strong enough to oppose OB stellar radiation pressure, while in the base of the fingers the magnetic fields hinder mass accretion and consequently star formation. We also support an initial weak-field model (<50μG) with subsequent strengthening through realignment and compression, resulting in a dynamically important magnetic field.more » « less
-
Abstract Magnetic fields may play a crucial role in setting the initial conditions of massive star and star cluster formation. To investigate this, we report SOFIA-HAWC+ 214μm observations of polarized thermal dust emission and high-resolution GBT-Argus C18O(1-0) observations toward the massive Infrared Dark Cloud (IRDC) G28.37+0.07. Considering the local dispersion ofB-field orientations, we produce a map of the B-field strength of the IRDC, which exhibits values between ∼0.03 and 1 mG based on a refined Davis–Chandrasekhar–Fermi method proposed by Skalidis & Tassis. Comparing to a map of inferred density, the IRDC exhibits aB–nrelation with a power-law index of 0.51 ± 0.02, which is consistent with a scenario of magnetically regulated anisotropic collapse. Consideration of the mass-to-flux ratio map indicates that magnetic fields are dynamically important in most regions of the IRDC. A virial analysis of a sample of massive, dense cores in the IRDC, including evaluation of magnetic and kinetic internal and surface terms, indicates consistency with virial equilibrium, sub-Alfvénic conditions, and a dominant role forB-fields in regulating collapse. A clear alignment of magnetic field morphology with the direction of the steepest column density gradient is also detected. However, there is no preferred orientation of protostellar outflow directions with theB-field. Overall, these results indicate that magnetic fields play a crucial role in regulating massive star and star cluster formation, and therefore they need to be accounted for in theoretical models of these processes.more » « less
-
Abstract Utilizing Planck polarized dust emission maps at 353 GHz and large-area maps of the neutral hydrogen (Hi) cold neutral medium (CNM) fraction (fCNM), we investigate the relationship between dust polarization fraction (p353) andfCNMin the diffuse high latitude ( ) sky. We find that the correlation betweenp353andfCNMis qualitatively distinct from thep353–Hicolumn density (NHi) relationship. At low column densities (NHi< 4 × 1020cm−2) wherep353andNHiare uncorrelated, there is a strong positivep353–fCNMcorrelation. We fit thep353–fCNMcorrelation with data-driven models to constrain the degree of magnetic field disorder between phases along the line of sight. We argue that an increased magnetic field disorder in the warm neutral medium (WNM) relative to the CNM best explains the positivep353–fCNMcorrelation in diffuse regions. Modeling the CNM-associated dust column as being maximally polarized, with a polarization fractionpCNM∼ 0.2, we find that the best-fit mean polarization fraction in the WNM-associated dust column is 0.22pCNM. The model further suggests that a significantfCNM-correlated fraction of the non-CNM column (an additional 18.4% of the Himass on average) is also more magnetically ordered, and we speculate that the additional column is associated with the unstable medium. Our results constitute a new large-area constraint on the average relative disorder of magnetic fields between the neutral phases of the interstellar medium, and are consistent with the physical picture of a more magnetically aligned CNM column forming out of a disordered WNM.more » « less
-
Abstract We present 870μm polarimetric observations toward 61 protostars in the Orion molecular clouds with ∼400 au (1″) resolution using the Atacama Large Millimeter/submillimeter Array. We successfully detect dust polarization and outflow emission in 56 protostars; in 16 of them the polarization is likely produced by self-scattering. Self-scattering signatures are seen in several Class 0 sources, suggesting that grain growth appears to be significant in disks at earlier protostellar phases. For the rest of the protostars, the dust polarization traces the magnetic field, whose morphology can be approximately classified into three categories: standard-hourglass, rotated-hourglass (with its axis perpendicular to outflow), and spiral-like morphology. A total of 40.0% (±3.0%) of the protostars exhibit a mean magnetic field direction approximately perpendicular to the outflow on several × 102–103au scales. However, in the remaining sample, this relative orientation appears to be random, probably due to the complex set of morphologies observed. Furthermore, we classify the protostars into three types based on the C17O (3–2) velocity envelope’s gradient: perpendicular to outflow, nonperpendicular to outflow, and unresolved gradient (≲1.0 km s−1arcsec−1). In protostars with a velocity gradient perpendicular to outflow, the magnetic field lines are preferentially perpendicular to outflow, with most of them exhibiting a rotated hourglass morphology, suggesting that the magnetic field has been overwhelmed by gravity and angular momentum. Spiral-like magnetic fields are associated with envelopes having large velocity gradients, indicating that the rotation motions are strong enough to twist the field lines. All of the protostars with a standard-hourglass field morphology show no significant velocity gradient due to the strong magnetic braking.more » « less
An official website of the United States government
