Abstract Cloud droplet number concentration (Nd) is a key microphysical property that is largely controlled by the balance between sources and sinks of aerosols that serve as cloud condensation nuclei (CCN). Despite being a key sink of CCN, the impact of coalescence scavenging on Southern Ocean (SO) cloud is poorly known. We apply a simple source‐and‐sink budget model based on parameterizations to austral summer aircraft observations to test model behavior and examine the relative influence of processes that determineNdin SO stratocumulus clouds. The model predictsNdwith little bias and a correlation coefficient of ∼0.7 compared with observations. Coalescence scavenging is found to be an important sink of CCN in both liquid and mixed‐phase precipitating stratocumulus and reduces the predictedNdby as much as 90% depending on the precipitation rate. The free tropospheric aerosol source controlsNdmore strongly than the surface aerosol source during austral summer.
more »
« less
Influences of Recent Particle Formation on Southern Ocean Aerosol Variability and Low Cloud Properties
Abstract Controls on pristine aerosol over the Southern Ocean (SO) are critical for constraining the strength of global aerosol indirect forcing. Observations of summertime SO clouds and aerosols in synoptically varied conditions during the 2018 SOCRATES aircraft campaign reveal novel mechanisms influencing pristine aerosol‐cloud interactions. The SO free troposphere (3–6 km) is characterized by widespread, frequent new particle formation events contributing to much larger concentrations (≥1,000 mg−1) of condensation nuclei (diameters > 0.01 μm) than in typical sub‐tropical regions. Synoptic‐scale uplift in warm conveyor belts and sub‐polar vortices lifts marine biogenic sulfur‐containing gases to free‐tropospheric environments favorable for generating Aitken‐mode aerosol particles (0.01–0.1 μm). Free‐tropospheric Aitken particles subside into the boundary layer, where they grow in size to dominate the sulfur‐based cloud condensation nuclei (CCN) driving SO cloud droplet number concentrations (Nd ∼ 60–100 cm−3). Evidence is presented for a hypothesized Aitken‐buffering mechanism which maintains persistently high summertime SONdagainst precipitation removal through CCN replenishment from activation and growth of boundary layer Aitken particles. Nudged hindcasts from the Community Atmosphere Model (CAM6) are found to underpredict Aitken and accumulation mode aerosols andNd, impacting summertime cloud brightness and aerosol‐cloud interactions and indicating incomplete representations of aerosol mechanisms associated with ocean biology.
more »
« less
- PAR ID:
- 10362541
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Atmospheres
- Volume:
- 126
- Issue:
- 8
- ISSN:
- 2169-897X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Biomass burning smoke aerosols are efficient at attenuating incoming solar radiation. The Layered Atlantic Smoke Interactions with Clouds campaign was conducted from June 2016 to October 2017. The U. S. Department of Energy mobile Atmospheric Radiation Measurement site located on Ascension Island (AMF‐ASI) identified several instances of smoke plume intrusions. Increases in surface and column measurements of aerosol loading were directly related to increases in fine mode fraction, number concentrations of aerosols (Na), and cloud condensation nuclei (NCCN). During periods of weak lower tropospheric stability, smoke particles were more likely to be advected downward either by boundary layer turbulence or cloud top entrainment under non‐overcast sky conditions. Backward trajectory analysis illustrated that smoke aerosols reaching the AMF‐ASI site were fine mode, less aged, strongly absorbing, and had shorter boundary layer trajectories while longer boundary layer trajectories denoted mixtures of weakly absorbing smoke and coarse mode marine aerosols. The most polluted smoke cases of August 2016 and 2017 revealed a notable contrast in radiative forcing per unit aerosol optical depth or radiative forcing efficiency (ΔFeff) at the top of the atmosphere (TOA) and near‐surface (BOA). The weakly (strongly) absorbing 2016 cases exhibited weaker (stronger) ΔFeffat the TOA and BOA suggesting a warming (cooling) effect within the boundary layer. The 2017 cases featured the strongest ΔFeffsuggesting more of a cooling effect at the TOA and BOA due to mixing of fresh smoke with marine aerosols during transport.more » « less
-
Abstract Cloud formation in the Pi Convection–Cloud Chamber is achieved via ionization in humid conditions, without the injection of aerosol particles to serve as cloud condensation nuclei (CCN). Abundant ions, turbulence, and supersaturated water vapor combine to produce new particles, which grow to become CCN sized and eventually are activated to form clouds. Coupling between the new particle formation and cloud droplets causes predator-prey type oscillations in aerosol and droplet concentrations under turbulent conditions. Leading terms are identified in the budgets for Aitken and accumulation mode aerosols and for cloud droplets. The cloud coupling is proposed to be a result of cloud-induced runaway CCN production through aerosol scavenging. The experiments suggest potential applications to marine cloud brightening, in which ions rather than sea-salt aerosols are generated.more » « less
-
null (Ed.)Abstract Weather and climate models are challenged by uncertainties and biases in simulating Southern Ocean (SO) radiative fluxes that trace to a poor understanding of cloud, aerosol, precipitation and radiative processes, and their interactions. Projects between 2016 and 2018 used in-situ probes, radar, lidar and other instruments to make comprehensive measurements of thermodynamics, surface radiation, cloud, precipitation, aerosol, cloud condensation nuclei (CCN) and ice nucleating particles over the SO cold waters, and in ubiquitous liquid and mixed-phase cloudsnucleating particles over the SO cold waters, and in ubiquitous liquid and mixed-phase clouds common to this pristine environment. Data including soundings were collected from the NSF/NCAR G-V aircraft flying north-south gradients south of Tasmania, at Macquarie Island, and on the RV Investigator and RSV Aurora Australis. Synergistically these data characterize boundary layer and free troposphere environmental properties, and represent the most comprehensive data of this type available south of the oceanic polar front, in the cold sector of SO cyclones, and across seasons. Results show a largely pristine environments with numerous small and few large aerosols above cloud, suggesting new particle formation and limited long-range transport from continents, high variability in CCN and cloud droplet concentrations, and ubiquitous supercooled water in thin, multi-layered clouds, often with small-scale generating cells near cloud top. These observations demonstrate how cloud properties depend on aerosols while highlighting the importance of confirmed low clouds were responsible for radiation biases. The combination of models and observations is examining how aerosols and meteorology couple to control SO water and energy budgets.more » « less
-
null (Ed.)Long-range transport of biogenic emissions from the coast of Antarctica, precipitation scavenging, and cloud processing are the main processes that influence the observed variability in Southern Ocean (SO) marine boundary layer (MBL) condensation nuclei (CN) and cloud condensation nuclei (CCN) concentrations during the austral summer. Airborne particle measurements on the HIAPER GV from north-south transects between Hobart, Tasmania and 62°S during the Southern Ocean Clouds, Radiation Aerosol Transport Experimental Study (SOCRATES) were separated into four regimes comprising combinations of high and low concentrations of CCN and CN. In 5-day HYSPLIT back trajectories, air parcels with elevated CCN concentrations were almost always shown to have crossed the Antarctic coast, a location with elevated phytoplankton emissions relative to the rest of the SO in the region south of Australia. The presence of high CCN concentrations was also consistent with high cloud fractions over their trajectory, suggesting there was substantial growth of biogenically formed particles through cloud processing. Cases with low cloud fraction, due to the presence of cumulus clouds, had high CN concentrations, consistent with previously reported new particle formation in cumulus outflow regions. Measurements associated with elevated precipitation during the previous 1.5-days of their trajectory had low CCN concentrations indicating CCN were effectively scavenged by precipitation. A coarse-mode fitting algorithm was used to determine the primary marine aerosol (PMA) contribution which accounted for < 20% of CCN (at 0.3% supersaturation) and cloud droplet number concentrations. Vertical profiles of CN and large particle concentrations (Dp > 0.07µm) indicated that particle formation occurs more frequently above the MBL; however, the growth of recently formed particles typically occurs in the MBL, consistent with cloud processing and the condensation of volatile compound oxidation products.more » « less
An official website of the United States government
