MXenes are a new family of two-dimensional carbides and/or nitrides. Their 2D surfaces are typically terminated by O, OH and/or F atoms. Here we show that Ti3C2T
- Award ID(s):
- 1740795
- NSF-PAR ID:
- 10362624
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- 2D Materials
- Volume:
- 8
- Issue:
- 3
- ISSN:
- 2053-1583
- Page Range / eLocation ID:
- Article No. 035003
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Transition metal carbides (MXenes) are an emerging family of highly conductive two-dimensional materials with additional functional properties introduced by surface terminations. Further modification of the surface terminations makes MXenes even more appealing for practical applications. Herein, we report a facile and environmentally benign synthesis of reduced Ti 3 C 2 T x MXene (r-Ti 3 C 2 T x ) via a simple treatment with l -ascorbic acid at room temperature. r-Ti 3 C 2 T x shows a six-fold increase in electrical conductivity, from 471 ± 49 for regular Ti 3 C 2 T x to 2819 ± 306 S m −1 for the reduced version. Additionally, we show an enhanced oxidation stability of r-Ti 3 C 2 T x as compared to regular Ti 3 C 2 T x . An examination of the surface-enhanced Raman scattering (SERS) activity reveals that the SERS enhancement factor of r-Ti 3 C 2 T x is an order of magnitude higher than that of regular Ti 3 C 2 T x . The improved SERS activity of r-Ti 3 C 2 T x is attributed to the charge transfer interaction between the MXene surface and probe molecules, re-enforced by an increased electronic density of states (DOS) at the Fermi level of r-Ti 3 C 2 T x . The findings of this study suggest that reduced MXene could be a superior choice over regular MXene, especially for the applications that employ high electronic conductivity, such as electrode materials for batteries and supercapacitors, photodetectors, and SERS-based sensors.more » « less
-
Abstract The chemical stability of 2D MXene nanosheets in aqueous dispersions must be maintained to foster their widespread application. MXene nanosheets react with water, which results in the degradation of their 2D structure into oxides and carbon residues. The latter detrimentally restricts the shelf life of MXene dispersions and devices. However, the mechanism of MXene degradation in aqueous environment has yet to be fully understood. In this work, the oxidation kinetics is investigated of Ti3C2T
x and Ti2CTx in aqueous media as a function of initial pH values, ionic strengths, and nanosheet concentrations. The pH value of the dispersion is found to change with time as a result of MXene oxidation. Specifically, MXene oxidation is accelerated in basic media by their reaction with hydroxyl anions. It is also demonstrated that oxidation kinetics are strongly dependent on nanosheet dispersion concentration, in which oxidation is accelerated for lower MXene concentrations. Ionic strength does not strongly affect MXene oxidation. The authors also report that citric acid acts as an effective antioxidant and mitigates the oxidation of both Ti3C2Tx and Ti2CTx MXenes. Reactive molecular dynamic simulations suggest that citric acid associates with the nanosheet edge to hinder the initiation of oxidation. -
Abstract To advance the MXene field, it is crucial to optimize each step of the synthesis process and create a detailed, systematic guide for synthesizing high‐quality MXene that can be consistently reproduced. In this study, a detailed guide is provided for an optimized synthesis of titanium carbide (Ti3C2T
x ) MXene using a mixture of hydrofluoric and hydrochloric acids for the selective etching of the stoichimetric‐Ti3AlC2MAX phase and delamination of the etched multilayered Ti3C2Tx MXene using lithium chloride at 65 °C for 1 h with argon bubbling. The effect of different synthesis variables is investigated, including the stoichiometry of the mixed powders to synthesize Ti3AlC2, pre‐etch impurity removal conditions, selective etching, storage, and drying of MXene multilayer powder, and the subsequent delamination conditions. The synthesis yield and the MXene film electrical conductivity are used as the two parameters to evaluate the MXene quality. Also the MXenes are characterized with scanning electron microscopy, x‐ray diffraction, atomic force microscopy, and ellipsometry. The Ti3C2Tx film made via the optimized method shows electrical conductivity as high as ≈21,000 S/cm with a synthesis yield of up to 38 %. A detailed protocol is also provided for the Ti3C2Tx MXene synthesis as the supporting information for this study. -
Abstract MXenes constitute a rapidly growing family of 2D materials that are promising for optoelectronic applications because of numerous attractive properties, including high electrical conductivity. However, the most widely used titanium carbide (Ti3C2T
x ) MXene transparent conductive electrode exhibits insufficient environmental stability and work function (WF ), which impede practical applications Ti3C2Tx electrodes in solution‐processed optoelectronics. Herein, Ti3C2Tx MXene film with a compact structure and a perfluorosulfonic acid (PFSA) barrier layer is presented as a promising electrode for organic light‐emitting diodes (OLEDs). The electrode shows excellent environmental stability, highWF of 5.84 eV, and low sheet resistanceR Sof 97.4 Ω sq−1. The compact Ti3C2Tx structure after thermal annealing resists intercalation of moisture and environmental contaminants. In addition, the PFSA surface modification passivates interflake defects and modulates theWF . Thus, changes in theWF andR Sare negligible even after 22 days of exposure to ambient air. The Ti3C2Tx MXene is applied for large‐area, 10 × 10 passive matrix flexible OLEDs on substrates measuring 6 × 6 cm. This work provides a simple but efficient strategy to overcome both the limited environmental stability and lowWF of MXene electrodes for solution‐processable optoelectronics.