Abstract Nuclear reactions heat and cool the crust of accreting neutron stars and need to be understood to interpret observations of X-ray bursts and long-term cooling in transiently accreting systems. It was recently suggested that previously ignored neutron transfer reactions may play a significant role in the nuclear processes. We present results from full nuclear network calculations that now include these reactions and determine their impact on crust composition, crust impurity, heating, and cooling. We find that a large number of neutron transfer reactions indeed occur and impact crust models. In particular, we identify a new type of reaction cycle that brings a pair of nuclei across the nuclear chart into equilibrium via alternating neutron capture and neutron release, interspersed with a neutron transfer. While neutron transfer reactions lead to changes in crust model predictions and need to be considered in future studies, previous conclusions concerning heating, cooling, and compositional evolution are remarkably robust. 
                        more » 
                        « less   
                    
                            
                            Impact of Pycnonuclear Fusion Uncertainties on the Cooling of Accreting Neutron Star Crusts
                        
                    
    
            Abstract The observation of X-rays during quiescence from transiently accreting neutron stars provides unique clues about the nature of dense matter. This, however, requires extensive modeling of the crusts and matching the results to observations. The pycnonuclear fusion reaction rates implemented in these models are theoretically calculated by extending phenomenological expressions and have large uncertainties spanning many orders of magnitude. We present the first sensitivity studies of these pycnonuclear fusion reactions in realistic network calculations. We also couple the reaction network with the thermal evolution codedStarto further study their impact on the neutron star cooling curves in quiescence. Varying the pycnonuclear fusion reaction rates alters the depth at which nuclear heat is deposited although the total heating remains constant. The enhancement of the pycnonuclear fusion reaction rates leads to an overall shallower deposition of nuclear heat. The impurity factors are also altered depending on the type of ashes deposited on the crust. These total changes correspond to a variation of up to 9 eV in the modeled cooling curves. While this is not sufficient to explain the shallow heat source, it is comparable to the observational uncertainties and can still be important for modeling the neutron star crust. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10463625
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 955
- Issue:
- 1
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 51
- Size(s):
- Article No. 51
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract At the low temperature and high density conditions of a neutron star crust neutrons are degenerate. In this work, we study the effect of this degeneracy on the capture rates of neutrons on neutron rich nuclei in accreted crusts. We use a statistical Hauser–Feshbach model to calculate neutron capture rates and find that neutron degeneracy can increase rates significantly. Changes increase from a factor of a few to many orders of magnitude near the neutron drip line. We also quantify uncertainties due to model inputs for masses,γ-strength functions, and level densities. We find that uncertainties increase dramatically away from stability and that degeneracy tends to increase these uncertainties further, except for cases near the neutron drip line where degeneracy leads to more robustness. As in the case of capture of classically distributed neutrons, variations in the mass model have the strongest impact. Corresponding variations in the reaction rates can be as high as 3–4 orders of magnitude, and be more than 5 times larger than under classical conditions. To ease the incorporation of neutron degeneracy in nucleosynthesis networks, we provide tabulated results of capture rates as well as analytical expressions as function of temperature and neutron chemical potential, for proton numbers between 3 ≤Z≤ 85, derived from fits to our numerical results. Fits are based on a new parametrization that complements previously employed power law approximations with additional Lorentzian terms that account for low energy resonances, significantly improving accuracy.more » « less
- 
            Abstract A novel methodology is developed to extract accurate skeletal reaction models for nuclear combustion. Local sensitivities of isotope mass fractions with respect to reaction rates are modeled based on the forced optimally time-dependent (f-OTD) scheme. These sensitivities are then analyzed temporally to generate skeletal models. The methodology is demonstrated by conducting skeletal reduction of constant density and temperature burning of carbon and oxygen relevant to Type Ia supernovae (SNe Ia). The 495-isotopes Torch model is chosen as the detailed reaction network. A map of maximum production of56Ni in SNe Ia is produced for different temperatures, densities, and proton-to-neutron ratios. The f-OTD simulations and the sensitivity analyses are then performed with initial conditions from this map. A series of skeletal models are derived and their performances are assessed by comparison against currently existing skeletal models. Previous models have been constructed intuitively by assuming the dominance ofα-chain reactions. The comparison of the newly generated skeletal models against previous models is based on the predicted energy release and44Ti and56Ni abundances by each model. The consequences ofye≠ 0.5 in the initial composition are also explored whereyeis the electron fraction. The simulated results show that56Ni production decreases by decreasingyeas expected, and that the43Sc is a key isotope in proton and neutron channels toward56Ni production. It is shown that an f-OTD skeletal model with 150 isotopes can accurately predict the56Ni abundance in SNe Ia forye≲ 0.5 initial conditions.more » « less
- 
            The formation of continental crust in magmatic arcs involves cooling of hot magmas to a relatively colder crust enhanced by exhumation and hydrothermal circulation in the upper crust. To quantify the influence of these processes on the thermal and rheological states of the crust, we developed a one-dimensional thermal evolution model, which invokes conductive cooling, advection of crust by erosion-driven exhumation, and cooling by hydrothermal circulation. We parameterized hydrothermal cooling by adopting depth-dependent effective thermal conductivity, which is determined by the crustal permeability structure and the prescribed Nusselt number at the surface. Different combinations of erosion rate and Nusselt number were tested to study the evolution of crustal geotherms, surface heat flux, and cooling rate. Simulations and scaling analyses quantify how erosion and hydrothermal circulation promote cooling via increasing total surface heat flux compared to pure conductive cooling. Hydrothermal circulation imposes intense short-term and persistent long-term cooling effects. Thinner, warmer, fast exhuming crust, with higher permeability and more vigorous hydrothermal circulation, leads to higher steady-state total surface heat flux. Hydrothermal cooling at steady state is more effective when the Péclet number is small. Hydrothermal cooling also changes crustal rheological state and thickens the brittle crust. This in turn promotes the initiation of brittle deformation in the upper crust in magmatic arcs or in regions undergoing exhumation. Interpretation of low-temperature thermochronological data could overestimate average cooling rates if hydrothermal cooling is not considered.more » « less
- 
            Abstract A promising astrophysical site to produce the lighter heavy elements of the first r -process peak ( Z = 38 − 47) is the moderately neutron-rich (0.4 < Y e < 0.5) neutrino-driven ejecta of explosive environments, such as core-collapse supernovae and neutron star mergers, where the weak r -process operates. This nucleosynthesis exhibits uncertainties from the absence of experimental data from ( α , xn ) reactions on neutron-rich nuclei, which are currently based on statistical model estimates. In this work, we report on a new study of the nuclear reaction impact using a Monte Carlo approach and improved ( α , xn ) rates based on the Atomki-V2 α optical model potential. We compare our results with observations from an up-to-date list of metal-poor stars with [Fe/H] < −1.5 to find conditions of the neutrino-driven wind where the lighter heavy elements can be synthesized. We identified a list of ( α , xn ) reaction rates that affect key elemental ratios in different astrophysical conditions. Our study aims to motivate more nuclear physics experiments on ( α , xn ) reactions using the current and new generation of radioactive beam facilities and also more observational studies of metal-poor stars.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
