skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Envelope Method for Time- and Space-Dependent Reliability Prediction
Abstract Reliability can be predicted by a limit-state function, which may vary with time and space. This work extends the envelope method for a time-dependent limit-state function to a time- and space-dependent limit-state function. The proposed method uses the envelope function of time- and space-dependent limit-state function. It at first searches for the most probable point (MPP) of the envelope function using the sequential efficient global optimization in the domain of the space and time under consideration. Then the envelope function is approximated by a quadratic function at the MPP for which analytic gradient and Hessian matrix of the envelope function are derived. Subsequently, the second-order saddlepoint approximation method is employed to estimate the probability of failure. Three examples demonstrate the effectiveness of the proposed method. The method can efficiently produce an accurate reliability prediction when the MPP is within the domain of the space and time under consideration.  more » « less
Award ID(s):
1923799
PAR ID:
10362770
Author(s) / Creator(s):
;
Date Published:
Journal Name:
ASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg
Volume:
8
Issue:
4
ISSN:
2332-9017
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract System reliability is quantified by the probability that a system performs its intended function in a period of time without failures. System reliability can be predicted if all the limit-state functions of the components of the system are available, and such a prediction is usually time consuming. This work develops a time-dependent system reliability method that is extended from the component time-dependent reliability method using the envelope method and second-order reliability method. The proposed method is efficient and is intended for series systems with limit-state functions whose input variables include random variables and time. The component reliability is estimated by the second-order component reliability method with an improve envelope approach, which produces a component reliability index. The covariance between component responses is estimated with the first-order approximations, which are available from the second-order approximations of the component reliability analysis. Then, the joint distribution of all the component responses is approximated by a multivariate normal distribution with its mean vector being component reliability indexes and covariance being those between component responses. The proposed method is demonstrated and evaluated by three examples. 
    more » « less
  2. null (Ed.)
    Abstract System reliability is quantified by the probability that a system performs its intended function in a period of time without failure. System reliability can be predicted if all the limit-state functions of the components of the system are available, and such a prediction is usually time consuming. This work develops a time-dependent system reliability method that is extended from the component time-dependent reliability method that uses the envelop method and second order reliability method. The proposed method is efficient and is intended for series systems with limit-state functions whose input variables include random variables and time. The component reliability is estimated by the existing second order component reliability method, which produces component reliability indexes. The covariance between components responses are estimated with the first order approximations, which are available from the second order approximations of the component reliability analysis. Then the joint probability of all the component responses is approximated by a multivariate normal distribution with its mean vector being component reliability indexes and covariance being those between component responses. The proposed method is demonstrated and evaluated by three examples. 
    more » « less
  3. Abstract Reliability analysis is usually a core element in engineering design, during which reliability is predicted with physical models (limit-state functions). Reliability analysis becomes computationally expensive when the dimensionality of input random variables is high. This work develops a high dimensional reliability analysis method by a new dimension reduction strategy so that the contributions of both important and unimportant input variables are accommodated by the proposed dimension reduction method. The consideration of the contributions of unimportant input variables can certainly improve the accuracy of the reliability prediction, especially where many unimportant input variables are involved. The dimension reduction is performed with the first iteration of the first order reliability method (FORM), which identifies important and unimportant input variables. Then a higher order reliability analysis, such as the second order reliability analysis and metamodeling method, is performed in the reduced space of only important input variables. The reliability obtained in the reduced space is then integrated with the contributions of unimportant input variables, resulting in the final reliability prediction that accounts for both types of input variables. Consequently, the new reliability method is more accurate than the traditional method, which fixes unimportant input variables at their means. The accuracy is demonstrated by three examples. 
    more » « less
  4. Abstract Reliability analysis is a core element in engineering design and can be performed with physical models (limit-state functions). Reliability analysis becomes computationally expensive when the dimensionality of input random variables is high. This work develops a high-dimensional reliability analysis method through a new dimension reduction strategy so that the contributions of unimportant input variables are also accommodated after dimension reduction. Dimension reduction is performed with the first iteration of the first-order reliability method (FORM), which identifies important and unimportant input variables. Then a higher order reliability analysis is performed in the reduced space of only important input variables. The reliability obtained in the reduced space is then integrated with the contributions of unimportant input variables, resulting in the final reliability prediction that accounts for both types of input variables. Consequently, the new reliability method is more accurate than the traditional method which fixes unimportant input variables at their means. The accuracy is demonstrated by three examples. 
    more » « less
  5. Critical infrastructure is the backbone of modern societies. To meet increasing demand under resource-constrained and multihazard conditions, policy-makers are tapping into infrastructure resiliency: its capacity to withstand and recover from disruptions. Thus, resiliency-aware uncertainty quantification is key to identify tipping points, yet it remains computationally inaccessible. This paper maps resiliency measures to well understood time-dependent reliability computations, porting insights and methods from reliability theory to the service of critical infrastructure resiliency and upkeep efforts. For large-scale applications, we use particle integration methods (PIMs)—a family of sequential Monte Carlo methods with wide-ranging applications—and propose their optimal tuning in terms of their variance and number of limit-state function evaluations. We obtain consistent and unbiased probability estimates in applications to dynamical systems, network reliability, and resilience analysis, demonstrating PIMs as practical yet under-appreciated tools. For example, we obtain probability estimates of order 10−14 in networks with over 10,000 random variables. 
    more » « less