skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: System Reliability Analysis With Autocorrelated Kriging Predictions
Abstract When limit-state functions are highly nonlinear, traditional reliability methods, such as the first-order and second-order reliability methods, are not accurate. Monte Carlo simulation (MCS), on the other hand, is accurate if a sufficient sample size is used but is computationally intensive. This research proposes a new system reliability method that combines MCS and the Kriging method with improved accuracy and efficiency. Accurate surrogate models are created for limit-state functions with minimal variance in the estimate of the system reliability, thereby producing high accuracy for the system reliability prediction. Instead of employing global optimization, this method uses MCS samples from which training points for the surrogate models are selected. By considering the autocorrelation of a surrogate model, this method captures the more accurate contribution of each MCS sample to the uncertainty in the estimate of the serial system reliability and therefore chooses training points efficiently. Good accuracy and efficiency are demonstrated by four examples.  more » « less
Award ID(s):
1923799
PAR ID:
10362778
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Mechanical Design
Volume:
142
Issue:
10
ISSN:
1050-0472
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The ever-increasing complexity of numerical models and associated computational demands have challenged classical reliability analysis methods. Surrogate model-based reliability analysis techniques, and in particular those using kriging meta-model, have gained considerable attention recently for their ability to achieve high accuracy and computational efficiency. However, existing stopping criteria, which are used to terminate the training of surrogate models, do not directly relate to the error in estimated failure probabilities. This limitation can lead to high computational demands because of unnecessary calls to costly performance functions (e.g., involving finite element models) or potentially inaccurate estimates of failure probability due to premature termination of the training process. Here, we propose the error-based stopping criterion (ESC) to address these limitations. First, it is shown that the total number of wrong sign estimation of the performance function for candidate design samples by kriging, S, follows a Poisson binomial distribution. This finding is subsequently used to estimate the lower and upper bounds of S for a given confidence level for sets of candidate design samples classified by kriging as safe and unsafe. An upper bound of error of the estimated failure probability is subsequently derived according to the probabilistic properties of Poisson binomial distribution. The proposed upper bound is implemented in the kriging-based reliability analysis method as the stopping criterion. The efficiency and robustness of ESC are investigated here using five benchmark reliability analysis problems. Results indicate that the proposed method achieves the set accuracy target and substantially reduces the computational demand, in some cases by over 50%. 
    more » « less
  2. Abstract Reliability analysis is a core element in engineering design and can be performed with physical models (limit-state functions). Reliability analysis becomes computationally expensive when the dimensionality of input random variables is high. This work develops a high-dimensional reliability analysis method through a new dimension reduction strategy so that the contributions of unimportant input variables are also accommodated after dimension reduction. Dimension reduction is performed with the first iteration of the first-order reliability method (FORM), which identifies important and unimportant input variables. Then a higher order reliability analysis is performed in the reduced space of only important input variables. The reliability obtained in the reduced space is then integrated with the contributions of unimportant input variables, resulting in the final reliability prediction that accounts for both types of input variables. Consequently, the new reliability method is more accurate than the traditional method which fixes unimportant input variables at their means. The accuracy is demonstrated by three examples. 
    more » « less
  3. Abstract Reliability analysis is usually a core element in engineering design, during which reliability is predicted with physical models (limit-state functions). Reliability analysis becomes computationally expensive when the dimensionality of input random variables is high. This work develops a high dimensional reliability analysis method by a new dimension reduction strategy so that the contributions of both important and unimportant input variables are accommodated by the proposed dimension reduction method. The consideration of the contributions of unimportant input variables can certainly improve the accuracy of the reliability prediction, especially where many unimportant input variables are involved. The dimension reduction is performed with the first iteration of the first order reliability method (FORM), which identifies important and unimportant input variables. Then a higher order reliability analysis, such as the second order reliability analysis and metamodeling method, is performed in the reduced space of only important input variables. The reliability obtained in the reduced space is then integrated with the contributions of unimportant input variables, resulting in the final reliability prediction that accounts for both types of input variables. Consequently, the new reliability method is more accurate than the traditional method, which fixes unimportant input variables at their means. The accuracy is demonstrated by three examples. 
    more » « less
  4. null (Ed.)
    Abstract System reliability is quantified by the probability that a system performs its intended function in a period of time without failure. System reliability can be predicted if all the limit-state functions of the components of the system are available, and such a prediction is usually time consuming. This work develops a time-dependent system reliability method that is extended from the component time-dependent reliability method that uses the envelop method and second order reliability method. The proposed method is efficient and is intended for series systems with limit-state functions whose input variables include random variables and time. The component reliability is estimated by the existing second order component reliability method, which produces component reliability indexes. The covariance between components responses are estimated with the first order approximations, which are available from the second order approximations of the component reliability analysis. Then the joint probability of all the component responses is approximated by a multivariate normal distribution with its mean vector being component reliability indexes and covariance being those between component responses. The proposed method is demonstrated and evaluated by three examples. 
    more » « less
  5. null (Ed.)
    Abstract System reliability is quantified by the probability that a system performs its intended function in a period of time without failures. System reliability can be predicted if all the limit-state functions of the components of the system are available, and such a prediction is usually time consuming. This work develops a time-dependent system reliability method that is extended from the component time-dependent reliability method using the envelope method and second-order reliability method. The proposed method is efficient and is intended for series systems with limit-state functions whose input variables include random variables and time. The component reliability is estimated by the second-order component reliability method with an improve envelope approach, which produces a component reliability index. The covariance between component responses is estimated with the first-order approximations, which are available from the second-order approximations of the component reliability analysis. Then, the joint distribution of all the component responses is approximated by a multivariate normal distribution with its mean vector being component reliability indexes and covariance being those between component responses. The proposed method is demonstrated and evaluated by three examples. 
    more » « less