skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Generalized and Efficient Control-Oriented Modeling Approach for Vibration-Prone Delta 3D Printers Using Receptance Coupling
Delta 3D printers can significantly increase throughput in additive manufacturing by enabling faster and more precise motion compared to conventional serial-axis 3D printers. Further improvements in motion speed and part quality can be realized through model-based feedforward vibration control, as demonstrated on serial-axis 3D printers. However, delta machines have not benefited from model-based controllers because of the difficulty in accurately modeling their position-dependent, coupled nonlinear dynamics. In this paper, we propose an efficient framework to obtain accurate linear parameter-varying models of delta 3D printers at any position within their workspace from a few frequency response measurements. We decompose the dynamics into two sub-models–(1) an experimentally-identified sub-model containing decoupled vibration dynamics; and (2) an analytically-derived sub-model containing coupled dynamics–which are combined into one using receptance coupling. We generalize the framework by extending the analytical model of (2) to account for differing mass profiles and dynamic models of the printer’s end-effector. Experiments demonstrate reasonably accurate predictions of the position-dependent dynamics of a commercial delta printer, augmented with a direct drive extruder, at various positions in its workspace. Note to Practitioners—This work aims to equip high-speed 3D printers, like delta machines, with model-based controllers to complement their speed with high-accuracy. Due to the coupled kinematic chains of the delta, complex control methodologies, some of which require real-time state measurements, are often used to achieve satisfactory control performance. Our modeling approach provides an efficient methodology for obtaining accurate linear models without the need for real-time measurements, thus enabling practitioners to design linear model-based feedforward controllers to achieve the high throughput and accuracy desired in additive manufacturing (AM). The models we develop in this paper are intended for use with feedforward vibration compensation methods, which can be beneficial for both industrial-scale AM machines that have high-powered servo motors and feedback controllers, as well as consumer-grade AM machines which use stepper motors in feedforward control.  more » « less
Award ID(s):
2054715
PAR ID:
10362797
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE Transactions on Automation Science and Engineering
ISSN:
1545-5955
Page Range / eLocation ID:
1 to 12
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Frog-legged robots are commonly used for silicon wafer handling in semiconductor manufacturing. However, their precision, speed and versatility are limited by vibration which varies with their position in the workspace. This paper proposes a methodology for modelling the pose-dependent vibration of a frog-legged robot as a function of its changing inertia, and its experimentally-identified joint stiffness and damping. The model is used to design a feedforward tracking controller for compensating the pose-dependent vibration of the robot. In experiments, the proposed method yields 65–73% reduction in RMS tracking error compared to a baseline controller designed for specific poses of the robot. 
    more » « less
  2. A hybrid filtered basis function (FBF) approach is proposed in this paper for feedforward tracking control of linear systems with unmodeled nonlinear dynamics. Unlike most available tracking control techniques, the FBF approach is very versatile; it is applicable to any type of linear system, regardless of its underlying dynamics. The FBF approach expresses the control input to a system as a linear combination of basis functions with unknown coefficients. The basis functions are forward filtered through a linear model of the system's dynamics and the unknown coefficients are selected such that tracking error is minimized. The linear models used in existing implementations of the FBF approach are typically physics-based representations of the linear dynamics of a system. The proposed hybrid FBF approach expands the application of the FBF approach to systems with unmodeled nonlinearities by learning from data. A hybrid model is formulated by combining a physics-based model of the system's linear dynamics with a data-driven linear model that approximates the unmodeled nonlinear dynamics. The hybrid model is used online in receding horizon to compute optimal control commands that minimize tracking errors. The proposed hybrid FBF approach is shown in simulations on a model of a vibration-prone 3D printer to improve tracking accuracy by up to 65.4%, compared to an existing FBF approach that does not incorporate data. 
    more » « less
  3. The structural flexibility of industrial robot arms makes them vibrate when they are commanded to move at fast operation speeds. Among the control strategies, feedforward control stands out as an interesting approach to suppress vibration since it does not create stability issues and works for repeating and non-repeating tasks. Currently, the state-of-the-art feedforward controller dedicated to suppressing residual vibration in robot arms is time-varying input shaping (TVIP). However, TVIP falls short in trajectory tracking tasks since the method adds delays in the commands creating errors in tracking and thereby contouring trajectories. Therefore, this paper proposes the use of an alternate feedforward method, known as the filtered B-splines (FBS) approach, to suppress vibration in six DOF robots while maintaining tracking accuracy. Since time-varying FBS (TVFBS) requires full frequency response functions (FRFs), compared to only natural frequencies and damping ratios for TVIP, we propose a framework for estimating the FRFs of serial kinematic chain 6-degree-of-freedom robots. Residual vibration reduction experiments and trajectory tracking experiments, in which the dynamics of a UR5e collaborative robot change considerably, were carried out to validate the model prediction framework. TVFBS reduced the end-effector vibration by 87% while improving tracking performance in both the y (22%) and z (29%) directions. On the other hand, TVIP worsened the tracking performance (-683.43% for the y and -662.37% for the z direction) despite the excellent vibration reduction (98%). Hence, TVFBS demonstrated significantly better tracking performance than TVIP while retaining comparable vibration reduction. 
    more » « less
  4. Abstract Accurate control of a humanoid robot's global position (i.e., its three-dimensional (3D) position in the world) is critical to the reliable execution of high-risk tasks such as avoiding collision with pedestrians in a crowded environment. This paper introduces a time-based nonlinear control approach that achieves accurate global-position tracking (GPT) for multi-domain bipedal walking. Deriving a tracking controller for bipedal robots is challenging due to the highly complex robot dynamics that are time-varying and hybrid, especially for multi-domain walking that involves multiple phases/domains of full actuation, over actuation, and underactuation. To tackle this challenge, we introduce a continuous-phase GPT control law for multi-domain walking, which provably ensures the exponential convergence of the entire error state within the full and over actuation domains and that of the directly regulated error state within the underactuation domain. We then construct sufficient multiple-Lyapunov stability conditions for the hybrid multi-domain tracking error system under the proposed GPT control law. We illustrate the proposed controller design through both three-domain walking with all motors activated and two-domain gait with inactive ankle motors. Simulations of a ROBOTIS OP3 bipedal humanoid robot demonstrate the satisfactory accuracy and convergence rate of the proposed control approach under two different cases of multi-domain walking as well as various walking speed and desired paths. 
    more » « less
  5. Abstract We present a position and orientation controller for a hybrid rigid-soft manipulator arm where the soft arm is extruded from a two degrees-of-freedom rigid link. Our approach involves learning the dynamics of the hybrid arm operating at 4Hz and leveraging it to generate optimal trajectories that serve as expert data to learn a control policy. We performed an extensive evaluation of the policy on a physical hybrid arm capable of jointly controlling rigid and soft actuation. We show that with a single policy, the arm is capable of reaching arbitrary poses in the workspace with 3.73cm (<6% overall arm length) and 17.78 deg error within 12.5s, operating at different control frequencies, and controlling the end effector with different loads. Our results showcase significant improvements in control speed while effectively controlling both the position and orientation of the end effector compared to previous quasistatic controllers for hybrid arms. 
    more » « less