skip to main content


Title: Stable isotope variations of dew under three different climates
Abstract

As a supplementary or the only water source in dry regions, dew plays a critical role in the survival of organisms. The new hydrological tracer17O-excess, with almost sole dependence on relative humidity, provides a new way to distinguish the evaporation processes and reconstruct the paleoclimate. Up to now, there is no published daily dew isotope record on δ2H, δ18O, δ17O, d-excess, and17O-excess. Here, we collected daily dew between July 2014 and April 2018 from three distinct climatic regions (i.e., Gobabeb in the central Namib Desert with desert climate, Nice in France with Mediterranean climate, and Indianapolis in the central United States with humid continental climate). The δ2H, δ18O, and δ17O of dew were simultaneously analyzed using a Triple Water Vapor Isotope Analyzer based on Off-Axis Integrated Cavity Output Spectroscopy technique, and then d-excess and17O-excess were calculated. This report presents daily dew isotope dataset under three climatic regions. It is useful for researchers to use it as a reference when studying global dew dynamics and dew formation mechanisms.

 
more » « less
NSF-PAR ID:
10362802
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Data
Volume:
9
Issue:
1
ISSN:
2052-4463
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Dew is one of the important moisture sources in many arid and semiarid regions. The knowledge of moisture origin of dew under various climatic conditions is still lacking. Isotopic variations can preserve information about moisture origin and formation mechanisms. Therefore, the isotopic compositions of dew and precipitation (δ2H, δ18O, δ17O,d‐excess,lc‐excess and17O‐excess) were investigated at three sites with different climatic conditions (i.e., Gobabeb with extremely dry climate, Nice with Mediterranean climate and Indianapolis with humid continental climate). The results showed that there were three types of dew at Gobabeb: advective dew, groundwater‐derived dew, and shallow soil water‐derived dew, accounting for 27.3%, 45.4% and 27.3% of the dew events, respectively. The ultimate moisture sources of advective dew and the other two types of dew at Gobabeb were from the South Atlantic Ocean and a mixture of the Indian and South Atlantic Oceans, respectively. Dew in Nice included ocean‐derived dew from the North Atlantic Ocean with local evapotranspiration replenishment, and local‐derived dew, mainly from the continental Europe and Mediterranean Sea, accounting for 39.1% and 60.9% of the dew events, respectively. All the Indianapolis dew were likely local‐derived dew. Based on the moisture origins, the future dew trends were speculated under global warming. Dew frequencies at Gobabeb and Indianapolis under future climates are uncertain due to the concurrent increases in atmospheric water vapour and temperature. The local‐derived dew in Nice would likely decrease due to the decreasing precipitation and increasing drought, and the ocean‐derived dew under future climates is uncertain. This study provides a practical method to distinguish dew moisture sources, and such information is useful for future prediction of dew trends under climate change.

     
    more » « less
  2. Abstract

    The isotopic composition of precipitation is used to trace water cycling and climate change, but interpretations of the environmental information recorded in central Andean precipitation isotope ratios are hindered by a lack of multi‐year records, poor spatial distribution of observations, and a predominant focus on Rayleigh distillation. To better understand isotopic variability in central Andean precipitation, we present a three‐year record of semimonthly δ18Opand δ2Hpvalues from 15 stations in southern Peru and triple oxygen isotope data, expressed as ∆′17Op, from 32 precipitation samples. Consistent with previous work, we find that elevation correlates negatively with δ18Opand that seasonal δ18Opvariations are related to upstream rainout and local convection. Spatial δ18Opvariations and atmospheric back trajectories show that both eastern‐ and western‐derived air masses bring precipitation to southern Peru. Seasonal d‐excesspcycles record moisture recycling and relative humidity at remote moisture sources, and both d‐excesspand ∆′17Opclearly differentiate evaporated and non‐evaporated samples. These results begin to establish the natural range of unevaporated ∆′17Opvalues in the central Andes and set the foundation for future paleoclimate and paleoaltimetry studies in the region. This study highlights the hydrologic understanding that comes from a combination of δ18Op, d‐excessp, and ∆′17Opdata and helps identify the evaporation, recycling, and rainout processes that drive water cycling in the central Andes.

     
    more » « less
  3. Abstract

    Patterns ofδ18O andδ2H in Earth's precipitation provide essential scientific data for use in hydrological, climatological, ecological and forensic research. Insufficient global spatial data coverage promulgated the use of gridded datasets employing geostatistical techniques (isoscapes) for spatiotemporally coherent isotope predictions. Cluster‐based isoscape regionalization combines the advantages of local or regional prediction calibrations into a global framework. Here we present a revision of a Regionalized Cluster‐Based Water Isotope Prediction model (RCWIP2) incorporating new isotope data having extensive spatial coverage and a wider array of predictor variables combined with high‐resolution gridded climatic data. We introduced coupling ofδ18O andδ2H (e.g.,d‐excess constrained) in the model predictions to prevent runaway isoscapes when each isotope is modelled separately and cross‐checked observed versus modelledd‐excess values. We improved model error quantification by adopting full uncertainty propagation in all calculations. RCWIP2 improved the RMSE over previous isoscape models by ca. 0.3 ‰ forδ18O and 2.5 ‰ forδ2H with an uncertainty <1.0 ‰ forδ18O and < 8 ‰ forδ2H for most regions of the world. The determination of the relative importance of each predictor variable in each ecoclimatic zone is a new approach to identify previously unrecognized climatic drivers on mean annual precipitationδ18O andδ2H. The improved RCWIP2 isoscape grids and maps (season, monthly, annual, regional) are available for download athttps://isotopehydrologynetwork.iaea.org.

     
    more » « less
  4. Abstract

    Tap water isotopic compositions could potentially record information on local climate and water management practices. A new water isotope tracer17O-excess became available in recent years providing additional information of the various hydrological processes. Detailed data records of tap water17O-excess have not been reported. In this report, monthly tap water samples (n = 652) were collected from December 2014 to November 2015 from 92 collection sites across China. The isotopic composition (δ2H, δ18O, and δ17O) of tap water was analyzed by a Triple Water Vapor Isotope Analyzer (T-WVIA) based on Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS) technique and two second-order isotopic variables (d-excess and17O-excess) were calculated. The geographic location information of the 92 collection sites including latitude, longitude, and elevation were also provided in this dataset. This report presents national-scale tap water isotope dataset at monthly time scale. Researchers and water resource managers who focus on the tap water issues could use them to probe the water source and water management strategies at large spatial scales.

     
    more » « less
  5. Arctic sea-ice loss is emblematic of an amplified Arctic water cycle and has critical feedback implications for global climate. Stable isotopes (δ 18 O, δ 2 H, d-excess ) are valuable tracers for constraining water cycle and climate processes through space and time. Yet, the paucity of well-resolved Arctic isotope data preclude an empirically derived understanding of the hydrologic changes occurring today, in the deep (geologic) past, and in the future. To address this knowledge gap, the Pan-Arctic Precipitation Isotope Network (PAPIN) was established in 2018 to coordinate precipitation sampling at 19 stations across key tundra, subarctic, maritime, and continental climate zones. Here, we present a first assessment of rainfall samples collected in summer 2018 ( n = 281) and combine new isotope and meteorological data with sea ice observations, reanalysis data, and model simulations. Data collectively establish a summer Arctic Meteoric Water Line where δ 2 H = 7.6⋅δ 18 O–1.8 ( r 2 = 0.96, p < 0.01). Mean amount-weighted δ 18 O, δ 2 H, and d-excess values were −12.3, −93.5, and 4.9‰, respectively, with the lowest summer mean δ 18 O value observed in northwest Greenland (−19.9‰) and the highest in Iceland (−7.3‰). Southern Alaska recorded the lowest mean d-excess (−8.2%) and northern Russia the highest (9.9‰). We identify a range of δ 18 O-temperature coefficients from 0.31‰/°C (Alaska) to 0.93‰/°C (Russia). The steepest regression slopes (>0.75‰/°C) were observed at continental sites, while statistically significant temperature relations were generally absent at coastal stations. Model outputs indicate that 68% of the summer precipitating air masses were transported into the Arctic from mid-latitudes and were characterized by relatively high δ 18 O values. Yet 32% of precipitation events, characterized by lower δ 18 O and high d-excess values, derived from northerly air masses transported from the Arctic Ocean and/or its marginal seas, highlighting key emergent oceanic moisture sources as sea ice cover declines. Resolving these processes across broader spatial-temporal scales is an ongoing research priority, and will be key to quantifying the past, present, and future feedbacks of an amplified Arctic water cycle on the global climate system. 
    more » « less