skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Culturable fungal endophyte communities of primary successional plants on Mount St. Helens, WA, USA
Abstract BackgroundWhile a considerable amount of research has explored plant community composition in primary successional systems, little is known about the microbial communities inhabiting these pioneer plant species. Fungal endophytes are ubiquitous within plants, and may play major roles in early successional ecosystems. Specifically, endophytes have been shown to affect successional processes, as well as alter host stress tolerance and litter decomposition dynamics—both of which are important components in harsh environments where soil organic matter is still scarce. ResultsTo determine possible contributions of fungal endophytes to plant colonization patterns, we surveyed six of the most common woody species on the Pumice Plain of Mount St. Helens (WA, USA; Lawetlat'la in the Cowlitz language; created during the 1980 eruption)—a model primary successional ecosystem—and found low colonization rates (< 15%), low species richness, and low diversity. Furthermore, while endophyte community composition did differ among woody species, we found only marginal evidence of temporal changes in community composition over a single field season (July–September). ConclusionsOur results indicate that even after a post-eruption period of 40 years, foliar endophyte communities still seem to be in the early stages of community development, and that the dominant pioneer riparian species Sitka alder (Alnus viridisssp.sinuata) and Sitka willow (Salix sitchensis) may be serving as important microbial reservoirs for incoming plant colonizers.  more » « less
Award ID(s):
1656057
PAR ID:
10362860
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
BMC Ecology and Evolution
Volume:
22
Issue:
1
ISSN:
2730-7182
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract PremiseEndophytic plant‐microbe interactions range from mutualistic relationships that confer important ecological and agricultural traits to neutral or quasi‐parasitic relationships. In contrast to root‐associated endophytes, the role of environmental and host‐related factors in the acquisition of leaf endophyte communities at broad spatial and phylogenetic scales remains sparsely studied. We assessed endofoliar diversity to test the hypothesis that membership in these microbial communities is driven primarily by abiotic environment and host phylogeny. MethodsWe used a broad geographic coverage of North America in the genusHeucheraL. (Saxifragaceae), representing 32 species and varieties across 161 populations. Bacterial and fungal communities were characterized using 16S and ITS amplicon sequencing, respectively, and standard diversity metrics were calculated. We assembled environmental predictors for microbial diversity at collection sites, including latitude, elevation, temperature, precipitation, and soil parameters. ResultsAssembly patterns differed between bacterial and fungal endophytes. Host phylogeny was significantly associated with bacteria, while geographic distance was the best predictor of fungal community composition. Species richness and phylogenetic diversity were consistent across sites and species, with only fungi showing a response to aridity and precipitation for some metrics. Unlike what has been observed with root‐associated microbial communities, in this system microbes show no relationship with pH or other soil factors. ConclusionsOverall, this work improves our understanding of the large‐scale patterns of diversity and community composition in leaf endophytes and highlights the relative significance of environmental and host‐related factors in driving different microbial communities within the leaf microbiome. 
    more » « less
  2. ABSTRACT Disruptions to functionally important symbionts with global change will negatively impact plant fitness, with broader consequences for species' abundances, distribution, and community composition. Fungal endophytes that live inside plant leaves and roots could potentially mitigate plant heat stress from global warming. Conversely, disruptions of these symbioses could exacerbate the negative impacts of warming. To better understand the consistency and strength of warming‐induced changes to fungal endophytes, we examined fungal leaf and root endophytes in three grassland warming experiments in the US ranging from 2 to 25 years and spanning 2000 km, 12°C of mean annual temperature, and 600 mm of precipitation. We found that experimental warming disrupted symbiosis between plants and fungal endophytes. Colonization of plant tissues by septate fungi decreased in response to warming by 90% in plant leaves and 35% in roots. Warming also reduced fungal diversity and changed community composition in plant leaves, but not roots. The strength, but not direction, of warming effects on fungal endophytes varied by up to 75% among warming experiments. Finally, warming decoupled fungal endophytes from host metabolism by decreasing the correlation between endophyte community and host metabolome dissimilarity. These effects were strongest in the shorter‐term experiment, suggesting endophyte‐host metabolome function may acclimate to warming over decades. Overall, warming‐driven disruption of fungal endophyte community structure and function suggests that this symbiosis may not be a reliable mechanism to promote plant resilience and ameliorate stress responses under global change. 
    more » « less
  3. Abstract Nearly all plants are colonized by fungal endophytes, and a growing body of work shows that both environment and host species shape plant-associated fungal communities. However, few studies place their work in a phylogenetic context to understand endophyte community assembly through an evolutionary lens. Here, we investigated environmental and host effects on root endophyte assemblages in coastal Louisiana marshes. We isolated and sequenced culturable fungal endophytes from roots of three to four dominant plant species from each of three sites of varying salinity. We assessed taxonomic diversity and composition as well as phylogenetic diversity (mean phylogenetic distance, MPD) and phylogenetic composition (based on MPD). When we analyzed plant hosts present across the entire gradient, we found that the effect of the environment on phylogenetic diversity (as measured by MPD) was host dependent and suggested phylogenetic clustering in some circumstances. We found that both environment and host plant affected taxonomic composition of fungal endophytes, but only host plant affected phylogenetic composition, suggesting different host plants selected for fungal taxa drawn from distinct phylogenetic clades, whereas environmental assemblages were drawn from similar clades. Our study demonstrates that including phylogenetic, as well as taxonomic, community metrics can provide a deeper understanding of community assembly in endophytes. 
    more » « less
  4. Abstract Bacterial and fungal root endophytes can impact the fitness of their host plants, but the relative importance of drivers for root endophyte communities is not well known. Host plant species, the composition and density of the surrounding plants, space, and abiotic drivers could significantly affect bacterial and fungal root endophyte communities. We investigated their influence in endophyte communities of alpine plants across a harsh high mountain landscape using high-throughput sequencing. There was less compositional overlap between fungal than bacterial root endophyte communities, with four ‘cosmopolitan’ bacterial OTUs found in every root sampled, but no fungal OTUs found across all samples. We found that host plant species, which included nine species from three families, explained the greatest variation in root endophyte composition for both bacterial and fungal communities. We detected similar levels of variation explained by plant neighborhood, space, and abiotic drivers on both communities, but the plant neighborhood explained less variation in fungal endophytes than expected. Overall, these findings suggest a more cosmopolitan distribution of bacterial OTUs compared to fungal OTUs, a structuring role of the plant host species for both communities, and largely similar effects of the plant neighborhood, abiotic drivers, and space on both communities. 
    more » « less
  5. Diverse communities of fungal endophytes reside in plant tissues, where they affect and are affected by plant physiology and ecology. For these intimate interactions to form and persist, endophytes and their host plants engage in intricate systems of communication. The conversation between fungal endophytes and plant hosts ultimately dictates endophyte community composition and function and has cascading effects on plant health and plant interactions. In this review, we synthesize our current knowledge on the mechanisms and strategies of communication used by endophytic fungi and their plant hosts. We discuss the molecular mechanisms of communication that lead to organ specificity of endophytic communities and distinguish endophytes, pathogens, and saprotrophs. We conclude by offering emerging perspectives on the relevance of plant-endophyte communication to microbial community ecology and plant health and function. 
    more » « less