skip to main content

This content will become publicly available on February 21, 2025

Title: Plant-endophyte communication: Scaling from molecular mechanisms to ecological outcomes
Diverse communities of fungal endophytes reside in plant tissues, where they affect and are affected by plant physiology and ecology. For these intimate interactions to form and persist, endophytes and their host plants engage in intricate systems of communication. The conversation between fungal endophytes and plant hosts ultimately dictates endophyte community composition and function and has cascading effects on plant health and plant interactions. In this review, we synthesize our current knowledge on the mechanisms and strategies of communication used by endophytic fungi and their plant hosts. We discuss the molecular mechanisms of communication that lead to organ specificity of endophytic communities and distinguish endophytes, pathogens, and saprotrophs. We conclude by offering emerging perspectives on the relevance of plant-endophyte communication to microbial community ecology and plant health and function.  more » « less
Award ID(s):
Author(s) / Creator(s):
Publisher / Repository:
Taylor and Francis Group
Date Published:
Journal Name:
Page Range / eLocation ID:
1 to 24
Subject(s) / Keyword(s):
["Community ecology","effectors","fungi","host\nspecificity","immune\nresponse","interaction"]
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Free‐air CO2enrichment (FACE) experiments have elucidated how climate change affects plant physiology and production. However, we lack a predictive understanding of how climate change alters interactions between plants and endophytes, critical microbial mediators of plant physiology and ecology. We leveraged the SoyFACE facility to examine how elevated [CO2] affected soybean (Glycine max)leaf endophyte communities in the field. Endophyte community composition changed under elevated [CO2], including a decrease in the abundance of a common endophyte,Methylobacteriumsp. Moreover,Methylobacteriumabundance was negatively correlated with co‐occurring fungal endophytes. We then assessed howMethylobacteriumaffected the growth of co‐occurring endophytic fungi in vitro.Methylobacteriumantagonized most co‐occurring fungal endophytes in vitro, particularly when it was more established in culture before fungal introduction. Variation in fungal response toMethylobacteriumwithin a single fungal operational taxonomic unit (OTU) was comparable to inter‐OTU variation. Finally, fungi isolated from elevated vs. ambient [CO2] plots differed in colony growth and response toMethylobacterium, suggesting that increasing [CO2] may affect fungal traits and interactions within the microbiome. By combining in situ and in vitro studies, we show that elevated [CO2] decreases the abundance of a common bacterial endophyte that interacts strongly with co‐occurring fungal endophytes. We suggest that endophyte responses to global climate change will have important but largely unexplored implications for both agricultural and natural systems.

    more » « less
  2. Abstract

    Fungal endophytes are pivotal components of a plant's microbiome, profoundly impacting its health and fitness. Yet, myriad questions remain concerning the intricate interactions between these microorganisms and their hosts, particularly in the context of agriculturally important plants such asCoffea arabica. To bridge this knowledge gap and provide a comprehensive framework, this study investigated how farming practices shape the taxonomic and functional diversity of phylloplane endophytes in coffee. Coffee plant leaves from two distinct producing regions in Costa Rica were sampled, ensuring the representation of various coffee varieties (Obatá, Catuaí, and Caturra), agricultural management methods (organic vs. conventional), sun exposure regimes (full sunlight/monoculture vs. natural shade/agroforestry), and leaf developmental stages (newly emerged asymptomatic vs. mature leaves). Fungal communities were characterized by employing both culture‐dependent and independent techniques (internal transcribed spacer 2 nuclear ribosomal DNA metabarcoding). The results showed a greater diversity of endophytes in mature leaves and conventionally managed plants, with coffee variety exerting an unclear influence. The effect of sun exposure was surprisingly negligible. However, data emphasize the benefits of agroforestry and organic farming, which are linked to reduced putative pathogens and heightened levels of potentially mutualistic fungi, fostering functionally diverse communities. Despite the role that plant microbiomes might play in agricultural production, the knowledge to shape endophytic communities through breeding or management is lacking. The results from this study provide a framework to understand how both plant and agricultural practices influence endophyte diversity within coffee crops. These insights hold promise for guiding future efforts to manipulate coffee microbial communities effectively.

    more » « less
  3. null (Ed.)
    Abstract Understanding how species-rich communities persist is a foundational question in ecology. In tropical forests, tree diversity is structured by edaphic factors, climate, and biotic interactions, with seasonality playing an essential role at landscape scales: wetter and less seasonal forests typically harbor higher tree diversity than more seasonal forests. We posited that the abiotic factors shaping tree diversity extend to hyperdiverse symbionts in leaves—fungal endophytes—that influence plant health, function, and resilience to stress. Through surveys in forests across Panama that considered climate, seasonality, and covarying biotic factors, we demonstrate that endophyte richness varies negatively with temperature seasonality. Endophyte community structure and taxonomic composition reflect both temperature seasonality and climate (mean annual temperature and precipitation). Overall our findings highlight the vital role of climate-related factors in shaping the hyperdiversity of these important and little-known symbionts of the trees that, in turn, form the foundations of tropical forest biodiversity. 
    more » « less
  4. Background

    Fungal endophytes inhabit symptomless, living tissues of all major plant lineages to form one of earth’s most prevalent groups of symbionts. Many reproduce from senesced and/or decomposing leaves and can produce extracellular leaf-degrading enzymes, blurring the line between symbiotrophy and saprotrophy. To better understand the endophyte–saprotroph continuum we compared fungal communities and functional traits of focal strains isolated from living leaves to those isolated from leaves after senescence and decomposition, with a focus on foliage of woody plants in five biogeographic provinces ranging from tundra to subtropical scrub forest.


    We cultured fungi from the interior of surface-sterilized leaves that were living at the time of sampling (i.e., endophytes), leaves that were dead and were retained in plant canopies (dead leaf fungi, DLF), and fallen leaves (leaf litter fungi, LLF) from 3–4 species of woody plants in each of five sites in North America. Our sampling encompassed 18 plant species representing two families of Pinophyta and five families of Angiospermae. Diversity and composition of fungal communities within and among leaf life stages, hosts, and sites were compared using ITS-partial LSU rDNA data. We evaluated substrate use and enzyme activity by a subset of fungi isolated only from living tissues vs. fungi isolated only from non-living leaves.


    Across the diverse biomes and plant taxa surveyed here, culturable fungi from living leaves were isolated less frequently and were less diverse than those isolated from non-living leaves. Fungal communities in living leaves also differed detectably in composition from communities in dead leaves and leaf litter within focal sites and host taxa, regardless of differential weighting of rare and abundant fungi. All focal isolates grew on cellulose, lignin, and pectin as sole carbon sources, but none displayed ligninolytic or pectinolytic activityin vitro. Cellulolytic activity differed among fungal classes. Within Dothideomycetes, activity differed significantly between fungi from living vs. non-living leaves, but such differences were not observed in Sordariomycetes.


    Although some fungi with endophytic life stages clearly persist for periods of time in leaves after senescence and incorporation into leaf litter, our sampling across diverse biomes and host lineages detected consistent differences between fungal assemblages in living vs. non-living leaves, reflecting incursion by fungi from the leaf exterior after leaf death and as leaves begin to decompose. However, fungi found only in living leaves do not differ consistently in cellulolytic activity from those fungi detected thus far only in dead leaves. Future analyses should consider Basidiomycota in addition to the Ascomycota fungi evaluated here, and should explore more dimensions of functional traits and persistence to further define the endophytism-to-saprotrophy continuum.

    more » « less
  5. Abstract

    A phylogenetically diverse array of fungi live within healthy leaf tissue of dicotyledonous plants. Many studies have examined these endophytes within a single plant species and/or at small spatial scales, but landscape‐scale variables that determine their community composition are not well understood, either across geographic space, across climatic conditions, or in the context of host plant phylogeny. Here, we evaluate the contributions of these variables to endophyte beta diversity using a survey of foliar endophytic fungi in native Hawaiian dicots sampled across the Hawaiian archipelago. We used Illumina technology to sequence fungal ITS1 amplicons to characterize foliar endophyte communities across five islands and 80 host plant genera. We found that communities of foliar endophytic fungi showed strong geographic structuring between distances of 7 and 36 km. Endophyte community structure was most strongly associated with host plant phylogeny and evapotranspiration, and was also significantly associated with NDVI, elevation and solar radiation. Additionally, our bipartite network analysis revealed that the five islands we sampled each harboured significantly specialized endophyte communities. These results demonstrate how the interaction of factors at large and small spatial and phylogenetic scales shapes fungal symbiont communities.

    more » « less