Abstract The Tocantins River contributes ∼5% of the total flux of water to the Amazon River plume in the Atlantic Ocean. Here, we evaluate monthly variability in the composition and abundance of carbon, nitrogen, and suspended sediment in the lower reaches of the Tocantins River from 2014 to 2016. Dissolved organic carbon concentrations generally increased during periods of high discharge and are ∼1.5 times lower than average concentrations at the mouth of the Amazon River. Dissolved inorganic carbon similarly increased during periods of high discharge. Total dissolved nitrogen and individual nitrogen species followed a similar temporal pattern, increasing during high water.predominated the dissolved inorganic nitrogen pool, followed by, and, characteristic of environments with a relatively low anthropogenic impact. Dissolved fractions represented 92% of the total carbon exported and 78% of the total nitrogen exported. The suspended particulate sediment flux was 2.72 × 106 t yr−1, with fine suspended sediment dominating (71.3%). Concentrations of carbon relative to nitrogen indicate a primarily terrigenous source of organic matter and CO2derived from in situ respiration of this material during the rainy season and a primarily algal/bacterial source of organic matter during the dry season. Considering past estimates of dissolved carbon and nitrogen fluxes from the Amazon River to the Atlantic Ocean, the Tocantins River contributes 3% and 3.7% to total fluxes to the Amazon River plume region, respectively. While this contribution is relatively small, it may be influenced by future changes to the basin's land use and hydrology.
more »
« less
FlocARAZI: An In‐Situ, Image‐Based Profiling Instrument for Sizing Solid and Flocculated Suspended Sediment
Abstract An inexpensive and compact underwater digital camera imaging system was developed to collect in situ high resolution images of flocculated suspended sediment at depths of up to 60 meters. The camera has a field of view of 3.7 × 2.8 mm and can resolve particles down to 5 . Depending on the degree of flocculation, the system is capable of accurately sizing particles to concentrations up to 500 mg/L. The system is fast enough to allow for profiling whereby size distributions of suspended particles and flocs can be provided at multiple verticals within the water column over a relatively short amount of time (approximately 15 min for a profile of 15 m). Using output from image processing routines, methods are introduced to estimate the mass suspended sediment concentration (SSC) from the images and to separate identified particles into sand and mud floc populations. The combination of these two methods allows for the size and concentration estimates of each fraction independently. The camera and image analysis methods are used in both the laboratory and the Mississippi River for development and testing. Output from both settings are presented in this study.
more »
« less
- Award ID(s):
- 2204852
- PAR ID:
- 10362882
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Earth Surface
- Volume:
- 126
- Issue:
- 11
- ISSN:
- 2169-9003
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We present an experimental study on the shear‐induced migration and axial development of particles in the channel flows of non‐Brownian suspensions. The suspending fluid is Newtonian. We investigate fracturing flows with a Hele‐Shaw type scaling through building a unique channel setup and an advanced optical system. The local particle concentration profiles are measured via the refractive‐index matching technique for a wide range of bulk volume fraction, that is,. Simultaneously, the particle image velocimetry is performed to determine the velocity profile of the particle phase. We compare our experimental results with the available two‐phase continuum frameworks and show discrepancies and similarities in the fully developed and axial development of the solid volume fraction profiles. We discuss directions in which the continuum frameworks require improvements.more » « less
-
Consider algorithms with unbounded computation time that probe the entries of the adjacency matrix of annvertex graph, and need to output a clique. We show that if the input graph is drawn at random from(and hence is likely to have a clique of size roughly), then for everyδ<2 and constantℓ, there is anα<2 (that may depend onδandℓ) such that no algorithm that makesnδprobes inℓrounds is likely (over the choice of the random graph) to output a clique of size larger than.more » « less
-
Abstract Multispectral optoacoustic tomography (MSOT) is a beneficial technique for diagnosing and analyzing biological samples since it provides meticulous details in anatomy and physiology. However, acquiring high through‐plane resolution volumetric MSOT is time‐consuming. Here, we propose a deep learning model based on hybrid recurrent and convolutional neural networks to generate sequential cross‐sectional images for an MSOT system. This system provides three modalities (MSOT, ultrasound, and optoacoustic imaging of a specific exogenous contrast agent) in a single scan. This study used ICG‐conjugated nanoworms particles (NWs‐ICG) as the contrast agent. Instead of acquiring seven images with a step size of 0.1 mm, we can receive two images with a step size of 0.6 mm as input for the proposed deep learning model. The deep learning model can generate five other images with a step size of 0.1 mm between these two input images meaning we can reduce acquisition time by approximately 71%.more » « less
-
Abstract Debate continues on the amount and distribution of radioactive heat producing elements (i.e., U, Th, and K) in the Earth, with estimates for mantle heat production varying by an order of magnitude. Constraints on the bulk‐silicate Earth's (BSE) radiogenic power also places constraints on overall BSE composition. Geoneutrino detection is a direct measure of the Earth's decay rate of Th and U. The geoneutrino signal has contributions from the local (40%) and global (35%) continental lithosphere and the underlying inaccessible mantle (25%). Geophysical models are combined with geochemical data sets to predict the geoneutrino signal at current and future geoneutrino detectors. We propagated uncertainties, both chemical and physical, through Monte Carlo methods. Estimated total signal uncertainties are on the order of20%, proportionally with geophysical and geochemical inputs contributing30% and70%, respectively. We find that estimated signals, calculated using CRUST2.0, CRUST1.0, and LITHO1.0, are within physical uncertainty of each other, suggesting that the choice of underlying geophysical model will not change results significantly, but will shift the central value by up to15%. Similarly, we see no significant difference between calculated layer abundances and bulk crustal heat production when using these geophysical models. The bulk crustal heat production is calculated as 7 2 TW, which includes an increase of 1 TW in uncertainty relative to previous studies. Combination of our predicted lithospheric signal with measured signals yield an estimated BSE heat production of 21.5 10.4 TW. Future improvements, including uncertainty attribution and near‐field modeling, are discussed.more » « less
An official website of the United States government
