Abstract We present13CO(J= 1 → 0) observations for the EDGE-CALIFA survey, which is a mapping survey of 126 nearby galaxies at a typical spatial resolution of 1.5 kpc. Using detected12CO emission as a prior, we detect13CO in 41 galaxies via integrated line flux over the entire galaxy and in 30 galaxies via integrated line intensity in resolved synthesized beams. Incorporating our CO observations and optical IFU spectroscopy, we perform a systematic comparison between the line ratio and the properties of the stars and ionized gas. Higher values are found in interacting galaxies compared to those in noninteracting galaxies. The global slightly increases with infrared colorF60/F100but appears insensitive to other host-galaxy properties such as morphology, stellar mass, or galaxy size. We also present azimuthally averaged profiles for our sample up to a galactocentric radius of 0.4r25(∼6 kpc), taking into account the13CO nondetections by spectral stacking. The radial profiles of are quite flat across our sample. Within galactocentric distances of 0.2r25, the azimuthally averaged increases with the star formation rate. However, Spearman rank correlation tests show the azimuthally averaged does not strongly correlate with any other gas or stellar properties in general, especially beyond 0.2r25from the galaxy centers. Our findings suggest that in the complex environments in galaxy disks, is not a sensitive tracer for ISM properties. Dynamical disturbances, like galaxy interactions or the presence of a bar, also have an overall impact on , which further complicates the interpretations of variations.
more »
« less
Kinetic-scale Current Sheets in the Solar Wind at 1 au: Scale-dependent Properties and Critical Current Density
Abstract We present analysis of 17,043 proton kinetic-scale current sheets (CSs) collected over 124 days of Wind spacecraft measurements in the solar wind at 11 samples s−1magnetic field resolution. The CSs have thickness,λ,from a few tens to one thousand kilometers with typical values around 100 km, or within about 0.1–10λpin terms of local proton inertial length,λp. We found that the current density is larger for smaller-scale CSs,J0≈ 6 nAm−2· (λ/100 km)−0.56, but does not statistically exceed a critical value,JA,corresponding to the drift between ions and electrons of local Alvén speed. The observed trend holds in normalized units: . The CSs are statistically force-free with magnetic shear angle correlated with CS spatial scale: . The observed correlations are consistent with local turbulence being the source of proton kinetic-scale CSs in the solar wind, while the mechanisms limiting the current density remain to be understood.
more »
« less
- Award ID(s):
- 2026680
- PAR ID:
- 10362905
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 926
- Issue:
- 2
- ISSN:
- 2041-8205
- Format(s):
- Medium: X Size: Article No. L19
- Size(s):
- Article No. L19
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We studyℓ∞norms ofℓ2-normalized eigenfunctions of quantum cat maps. For maps with short quantum periods (constructed by Bonechi and de Biévre in F Bonechi and S De Bièvre (2000,Communications in Mathematical Physics,211, 659–686)) we show that there exists a sequence of eigenfunctionsuwith . For general eigenfunctions we show the upper bound . Here the semiclassical parameter is . Our upper bound is analogous to the one proved by Bérard in P Bérard (1977,Mathematische Zeitschrift,155, 249-276) for compact Riemannian manifolds without conjugate points.more » « less
-
Abstract A steady-state, semi-analytical model of energetic particle acceleration in radio-jet shear flows due to cosmic-ray viscosity obtained by Webb et al. is generalized to take into account more general cosmic-ray boundary spectra. This involves solving a mixed Dirichlet–Von Neumann boundary value problem at the edge of the jet. The energetic particle distribution functionf0(r,p) at cylindrical radiusrfrom the jet axis (assumed to lie along thez-axis) is given by convolving the particle momentum spectrum with the Green’s function , which describes the monoenergetic spectrum solution in which asr→ ∞ . Previous work by Webb et al. studied only the Green’s function solution for . In this paper, we explore for the first time, solutions for more general and realistic forms for . The flow velocityu=u(r)ezis along the axis of the jet (thez-axis).uis independent ofz, andu(r) is a monotonic decreasing function ofr. The scattering time in the shear flow region 0 <r<r2, and , wheres> 0 in the regionr>r2is outside the jet. Other original aspects of the analysis are (i) the use of cosmic ray flow lines in (r,p) space to clarify the particle spatial transport and momentum changes and (ii) the determination of the probability distribution that particles observed at (r,p) originated fromr→ ∞ with momentum . The acceleration of ultrahigh-energy cosmic rays in active galactic nuclei jet sources is discussed. Leaky box models for electron acceleration are described.more » « less
-
Abstract We measure the CO-to-H2conversion factor (αCO) in 37 galaxies at 2 kpc resolution, using the dust surface density inferred from far-infrared emission as a tracer of the gas surface density and assuming a constant dust-to-metal ratio. In total, we have ∼790 and ∼610 independent measurements ofαCOfor CO (2–1) and (1–0), respectively. The mean values forαCO (2–1)andαCO (1–0)are and , respectively. The CO-intensity-weighted mean is 5.69 forαCO (2–1)and 3.33 forαCO (1–0). We examine howαCOscales with several physical quantities, e.g., the star formation rate (SFR), stellar mass, and dust-mass-weighted average interstellar radiation field strength ( ). Among them, , ΣSFR, and the integrated CO intensity (WCO) have the strongest anticorrelation with spatially resolvedαCO. We provide linear regression results toαCOfor all quantities tested. At galaxy-integrated scales, we observe significant correlations betweenαCOandWCO, metallicity, , and ΣSFR. We also find thatαCOin each galaxy decreases with the stellar mass surface density (Σ⋆) in high-surface-density regions (Σ⋆≥ 100M⊙pc−2), following the power-law relations and . The power-law index is insensitive to the assumed dust-to-metal ratio. We interpret the decrease inαCOwith increasing Σ⋆as a result of higher velocity dispersion compared to isolated, self-gravitating clouds due to the additional gravitational force from stellar sources, which leads to the reduction inαCO. The decrease inαCOat high Σ⋆is important for accurately assessing molecular gas content and star formation efficiency in the centers of galaxies, which bridge “Milky Way–like” to “starburst-like” conversion factors.more » « less
-
Abstract Polyatomic molecules have been identified as sensitive probes of charge-parity violating and parity violating physics beyond the Standard Model (BSM). For example, many linear triatomic molecules are both laser-coolable and have parity doublets in the ground electronic state arising from the bending vibration, both features that can greatly aid BSM searches. Understanding the state is a crucial prerequisite to precision measurements with linear polyatomic molecules. Here, we characterize the fundamental bending vibration of YbOH using high-resolution optical spectroscopy on the nominally forbidden transition at 588 nm. We assign 39 transitions originating from the lowest rotational levels of the state, and accurately model the state’s structure with an effective Hamiltonian using best-fit parameters. Additionally, we perform Stark and Zeeman spectroscopy on the state and fit the molecule-frame dipole moment to Dand the effective electrong-factor to . Further, we use an empirical model to explain observed anomalous line intensities in terms of interference from spin–orbit and vibronic perturbations in the excited state. Our work is an essential step toward searches for BSM physics in YbOH and other linear polyatomic molecules.more » « less