We present^{13}CO(
We present analysis of 17,043 proton kineticscale current sheets (CSs) collected over 124 days of Wind spacecraft measurements in the solar wind at 11 samples s^{−1}magnetic field resolution. The CSs have thickness,
 Award ID(s):
 2026680
 NSFPAR ID:
 10362905
 Publisher / Repository:
 DOI PREFIX: 10.3847
 Date Published:
 Journal Name:
 The Astrophysical Journal Letters
 Volume:
 926
 Issue:
 2
 ISSN:
 20418205
 Format(s):
 Medium: X Size: Article No. L19
 Size(s):
 Article No. L19
 Sponsoring Org:
 National Science Foundation
More Like this

Abstract J = 1 → 0) observations for the EDGECALIFA survey, which is a mapping survey of 126 nearby galaxies at a typical spatial resolution of 1.5 kpc. Using detected^{12}CO emission as a prior, we detect^{13}CO in 41 galaxies via integrated line flux over the entire galaxy and in 30 galaxies via integrated line intensity in resolved synthesized beams. Incorporating our CO observations and optical IFU spectroscopy, we perform a systematic comparison between the line ratio and the properties of the stars and ionized gas. Higher ${\mathit{\ue23e}}_{12/13}\equiv I{[}^{12}\mathrm{CO}(J=1\to 0)]/I{[}^{13}\mathrm{CO}(J=1\to 0)]$ values are found in interacting galaxies compared to those in noninteracting galaxies. The global ${\mathit{\ue23e}}_{12/13}$ slightly increases with infrared color ${\mathit{\ue23e}}_{12/13}$F _{60}/F _{100}but appears insensitive to other hostgalaxy properties such as morphology, stellar mass, or galaxy size. We also present azimuthally averaged profiles for our sample up to a galactocentric radius of 0.4 ${\mathit{\ue23e}}_{12/13}$r _{25}(∼6 kpc), taking into account the^{13}CO nondetections by spectral stacking. The radial profiles of are quite flat across our sample. Within galactocentric distances of 0.2 ${\mathit{\ue23e}}_{12/13}$r _{25}, the azimuthally averaged increases with the star formation rate. However, Spearman rank correlation tests show the azimuthally averaged ${\mathit{\ue23e}}_{12/13}$ does not strongly correlate with any other gas or stellar properties in general, especially beyond 0.2 ${\mathit{\ue23e}}_{12/13}$r _{25}from the galaxy centers. Our findings suggest that in the complex environments in galaxy disks, is not a sensitive tracer for ISM properties. Dynamical disturbances, like galaxy interactions or the presence of a bar, also have an overall impact on ${\mathit{\ue23e}}_{12/13}$ , which further complicates the interpretations of ${\mathit{\ue23e}}_{12/13}$ variations. ${\mathit{\ue23e}}_{12/13}$ 
Abstract A steadystate, semianalytical model of energetic particle acceleration in radiojet shear flows due to cosmicray viscosity obtained by Webb et al. is generalized to take into account more general cosmicray boundary spectra. This involves solving a mixed Dirichlet–Von Neumann boundary value problem at the edge of the jet. The energetic particle distribution function
f _{0}(r ,p ) at cylindrical radiusr from the jet axis (assumed to lie along thez axis) is given by convolving the particle momentum spectrum with the Green’s function ${f}_{0}(\infty ,p\prime )$ , which describes the monoenergetic spectrum solution in which $G(r,p;p\prime )$ as ${f}_{0}\to \delta (pp\prime )$r → ∞ . Previous work by Webb et al. studied only the Green’s function solution for . In this paper, we explore for the first time, solutions for more general and realistic forms for $G(r,p;p\prime )$ . The flow velocity ${f}_{0}(\infty ,p\prime )$ =u u (r ) _{z}is along the axis of the jet (thee z axis). is independent ofu z , andu (r ) is a monotonic decreasing function ofr . The scattering time in the shear flow region 0 < $\tau {(r,p)={\tau}_{0}(p/{p}_{0})}^{\alpha}$r <r _{2}, and , where $\tau {(r,p)={\tau}_{0}(p/{p}_{0})}^{\alpha}{(r/{r}_{2})}^{s}$s > 0 in the regionr >r _{2}is outside the jet. Other original aspects of the analysis are (i) the use of cosmic ray flow lines in (r ,p ) space to clarify the particle spatial transport and momentum changes and (ii) the determination of the probability distribution that particles observed at ( ${\psi}_{p}(r,p;p\prime )$r ,p ) originated fromr → ∞ with momentum . The acceleration of ultrahighenergy cosmic rays in active galactic nuclei jet sources is discussed. Leaky box models for electron acceleration are described. $p\prime $ 
Abstract We present a Keck/MOSFIRE restoptical composite spectrum of 16 typical gravitationally lensed starforming dwarf galaxies at 1.7 ≲
z ≲ 2.6 (z _{mean}= 2.30), all chosen independent of emissionline strength. These galaxies have a median stellar mass of and a median star formation rate of $\mathrm{log}{({M}_{*}/{M}_{\odot})}_{\mathrm{med}}={8.29}_{0.43}^{+0.51}$ . We measure the faint electrontemperaturesensitive [O ${\mathrm{S}\mathrm{F}\mathrm{R}}_{\mathrm{H}\alpha}^{\mathrm{m}\mathrm{e}\mathrm{d}}={2.25}_{1.26}^{+2.15}\phantom{\rule{0.25em}{0ex}}{M}_{\odot}\phantom{\rule{0.25em}{0ex}}{\mathrm{y}\mathrm{r}}^{1}$iii ]λ 4363 emission line at 2.5σ (4.1σ ) significance when considering a bootstrapped (statisticalonly) uncertainty spectrum. This yields a directmethod oxygen abundance of ( $12+\mathrm{log}{(\mathrm{O}/\mathrm{H})}_{\mathrm{direct}}={7.88}_{0.22}^{+0.25}$ ). We investigate the applicability at high ${0.15}_{0.06}^{+0.12}\phantom{\rule{0.33em}{0ex}}{Z}_{\odot}$z of locally calibrated oxygenbased strongline metallicity relations, finding that the local reference calibrations of Bian et al. best reproduce (≲0.12 dex) our composite metallicity at fixed strongline ratio. At fixedM _{*}, our composite is well represented by thez ∼ 2.3 directmethod stellar mass—gasphase metallicity relation (MZR) of Sanders et al. When comparing to predicted MZRs from the IllustrisTNG and FIRE simulations, having recalculated our stellar masses with more realistic nonparametric star formation histories , we find excellent agreement with the FIRE MZR. Our composite is consistent with no metallicity evolution, at fixed $(\mathrm{log}{({M}_{*}/{M}_{\odot})}_{\mathrm{med}}={8.92}_{0.22}^{+0.31})$M _{*}and SFR, of the locally defined fundamental metallicity relation. We measure the doublet ratio [Oii ]λ 3729/[Oii ]λ 3726 = 1.56 ± 0.32 (1.51 ± 0.12) and a corresponding electron density of ( ${n}_{e}={1}_{0}^{+215}\phantom{\rule{0.33em}{0ex}}{\mathrm{cm}}^{3}$ ) when considering the bootstrapped (statisticalonly) error spectrum. This result suggests that lowermass galaxies have lower densities than highermass galaxies at ${n}_{e}={1}_{0}^{+74}\phantom{\rule{0.33em}{0ex}}{\mathrm{cm}}^{3}$z ∼ 2. 
Abstract One of the cornerstone effects in spintronics is spin pumping by dynamical magnetization that is steadily precessing (around, for example, the
z axis) with frequencyω _{0}due to absorption of lowpower microwaves of frequencyω _{0}under the resonance conditions and in the absence of any applied bias voltage. The twodecadesold ‘standard model’ of this effect, based on the scattering theory of adiabatic quantum pumping, predicts that component of spin current vector ${I}^{{S}_{z}}$ is timeindependent while $({I}^{{S}_{x}}(t),{I}^{{S}_{y}}(t),{I}^{{S}_{z}})\propto {\omega}_{0}$ and ${I}^{{S}_{x}}(t)$ oscillate harmonically in time with a single frequency ${I}^{{S}_{y}}(t)$ω _{0}whereas pumped charge current is zero in the same adiabatic $I\equiv 0$ limit. Here we employ more general approaches than the ‘standard model’, namely the timedependent nonequilibrium Green’s function (NEGF) and the Floquet NEGF, to predict unforeseen features of spin pumping: namely precessing localized magnetic moments within a ferromagnetic metal (FM) or antiferromagnetic metal (AFM), whose conduction electrons are exposed to spin–orbit coupling (SOC) of either intrinsic or proximity origin, will pump both spin $\propto {\omega}_{0}$ and charge ${I}^{{S}_{\alpha}}(t)$I (t ) currents. All four of these functions harmonically oscillate in time at both even and odd integer multiples of the driving frequency $N{\omega}_{0}$ω _{0}. The cutoff order of such high harmonics increases with SOC strength, reaching in the onedimensional FM or AFM models chosen for demonstration. A higher cutoff ${N}_{\mathrm{m}\mathrm{a}\mathrm{x}}\simeq 11$ can be achieved in realistic twodimensional (2D) FM models defined on a honeycomb lattice, and we provide a prescription of how to realize them using 2D magnets and their heterostructures. ${N}_{\mathrm{m}\mathrm{a}\mathrm{x}}\simeq 25$ 
Abstract Polyatomic molecules have been identified as sensitive probes of chargeparity violating and parity violating physics beyond the Standard Model (BSM). For example, many linear triatomic molecules are both lasercoolable and have parity doublets in the ground electronic
state arising from the bending vibration, both features that can greatly aid BSM searches. Understanding the $\tilde{X}{}^{2}{\mathrm{\Sigma}}^{+}(010)$ state is a crucial prerequisite to precision measurements with linear polyatomic molecules. Here, we characterize the fundamental bending vibration of $\tilde{X}{}^{2}{\mathrm{\Sigma}}^{+}(010)$ YbOH using highresolution optical spectroscopy on the nominally forbidden ${}^{174}$ $\tilde{X}{}^{2}{\mathrm{\Sigma}}^{+}(010)$ transition at 588 nm. We assign 39 transitions originating from the lowest rotational levels of the $\to \tilde{A}{}^{2}{\mathrm{\Pi}}_{1/2}(000)$ state, and accurately model the state’s structure with an effective Hamiltonian using bestfit parameters. Additionally, we perform Stark and Zeeman spectroscopy on the $\tilde{X}{}^{2}{\mathrm{\Sigma}}^{+}(010)$ state and fit the moleculeframe dipole moment to $\tilde{X}{}^{2}{\mathrm{\Sigma}}^{+}(010)$ ${D}_{\mathrm{m}\mathrm{o}\mathrm{l}}=2.16(1)$D and the effective electrong factor to . Further, we use an empirical model to explain observed anomalous line intensities in terms of interference from spin–orbit and vibronic perturbations in the excited ${g}_{S}=2.07(2)$ state. Our work is an essential step toward searches for BSM physics in YbOH and other linear polyatomic molecules. $\tilde{A}{}^{2}{\mathrm{\Pi}}_{1/2}(000)$