Abstract High‐speed video records of a single‐stroke positive cloud‐to‐ground (+CG) flash were used to examine the evolution of eight needles developing more or less radially from the +CG channel. All these eight needles occurred during the later return‐stroke stage and the following continuing current stage. Six needles, after their initial extension from the lateral surface of the parent channel core, elongated via bidirectional recoil events, which are responsible for flickering, and two of them evolved into negative stepped leaders. For the latter two, the mean extension speed decreased from 5.3 × 106to 3.4 × 105and then to 1.3 × 105 m/s during the initial, recoil‐event, and stepping stages, respectively. The initial needle extension ranged from 70 to 320 m (N = 8), extension via recoil events from 50 to 210 m (N = 6), and extension via stepping from 810 to 1,870 m (N = 2). Compared with needles developing from leader channels, the different behavior of needle flickering, the longer length, the faster extension speed, and the higher flickering rate observed in this work may be attributed to a considerably higher current (rate of charge supply) during the return‐stroke and early continuing‐current stages of +CG flashes. 
                        more » 
                        « less   
                    
                            
                            High‐Speed Video Observations of Needles in a Positive Cloud‐to‐Ground Lightning Flash
                        
                    
    
            Abstract High‐speed video data were used to analyze the initiation and propagation of 36 needles and their associated 306 flickering events observed in a single‐stroke positive cloud‐to‐ground (+CG) flash. The needles occurred during the return‐stroke later stage and the continuing current, within approximate 10 ms after the onset of the +CG return stroke. They initiated near the lateral surface of the predominantly horizontal channel and extended almost perpendicular to that channel. Flickering events are recoil type streamers (or leaders) that retrace the channels created by needles. Flickering events can be repetitive and are classified into four categories based on different scenarios of their occurrence. Needles are caused by the radial motion of negative charge from the hot core of the positive‐leader channel into the positive corona sheath surrounding the core, when the core is rapidly recharged (its radial electric field reversed) by the return‐stroke process and during the following continuing current. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2114471
- PAR ID:
- 10363026
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 49
- Issue:
- 2
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract A positive cloud‐to‐ground (+CG) lightning flash containing a single stroke with a peak current of approximately +310 kA followed by a long continuing current triggered seven upward lightning flashes from tall structures. The flashes were observed on 4 June 2016 at the Tall Object Lightning Observatory in Guangzhou, Guangdong Province, China. The optical and electric field characteristics of these flashes were analyzed using synchronized two‐station data from two high‐speed video cameras, one total‐sky lightning channel imager, two lightning channel imagers, and two sets of slow and fast electric field measuring systems. Three upward flashes were initiated sequentially in the field of view of high‐speed video cameras. One of them was initiated approximately 0.35 ms after the return stroke of +CG flash from the Canton Tower, the tallest structure within a 12‐km radius of the +CG flash, while the other two upward flashes were initiated from two other, more distant tall objects, approximately 18 ms after the +CG flash stroke. The initiation of the latter two upward flashes could be caused by the combined effect of the return stroke of +CG flash, its associated continuing current, and K process in the cloud. Each of these three upward flashes contained multiple downward leader/upward return stroke sequences, with the first leader/return stroke sequence of the second and third flashes occurring only after the completion of the last leader/return stroke sequence of the preceding flash. The total number of strokes in the three upward flashes was 13, and they occurred over approximately 1.5 s.more » « less
- 
            Abstract High‐speed video and electric field records of two positive cloud‐to‐ground (+CG) flashes were used to examine the effect of M‐components on needle activity after the return stroke onset. We observed enhancements of needle activity that were associated with the occurrence of M‐components identified by channel luminosity enhancements both at cloud altitudes and near the ground. Full‐fledged M‐components enhance needle activity via injection of negative charge into the bottom of grounded channel and reversing the direction of the radial electric field at the channel core, similar to +CG return strokes. Attempted M‐components, identified by channel luminosity enhancements at the cloud but not near the ground, did not enhance needle activity because of the absence of significant reflection from the ground, which causes electric field reversal at the core.more » « less
- 
            Abstract High‐speed video and electric field change data were used to analyze the initiation and propagation of four predominantly vertical bidirectional leaders making connection to a predominantly horizontal channel previously formed aloft. The four bidirectional leaders sequentially developed along the same path and served to form a positive branch of the horizontal in‐cloud channel, which became a downward positive leader producing a 135‐kA positive cloud‐to‐ground (+CG) return stroke. The positive (lower) end of each bidirectional leader elongated abruptly at the time of connection of the negative (upper) end to the pre‐existing channel aloft. Thirty‐six negative streamer‐like filaments (resembling recently reported “needles”) extended sideways over ∼110 to 740 m from the pre‐existing horizontal channel at speeds of ∼0.5 to 1.9 × 107 m/s, in response to the injection of negative charge associated with the +CG.more » « less
- 
            Abstract Positive lightning discharges to ground (+CGs) are relatively rare and considerably less studied than negative ones (-CGs). We present observations of unusual transient phenomena occurring in +CGs and discuss their mechanisms. One of them is a brief electric coupling to a concurrent -CG initiated from a 257-m tall tower located 11 km from the +CG channel. A transient process (stroke) in the -CG flash appears to cause a transient luminosity enhancement (M-component) in the +CG channel. In the course of these essentially simultaneous transients, positive charge is in effect taken from the ground at the position of the tower and injected into the ground at the position of the +CG channel. Recoil leaders reactivating decayed +CG branches near the cloud base are each observed to cause a transient luminosity decrease (dip), as opposed to the expected luminosity increase, in the +CG main channel.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
