skip to main content


Title: Synchronized Two‐Station Optical and Electric Field Observations of Multiple Upward Lightning Flashes Triggered by a 310‐kA +CG Flash
Abstract

A positive cloud‐to‐ground (+CG) lightning flash containing a single stroke with a peak current of approximately +310 kA followed by a long continuing current triggered seven upward lightning flashes from tall structures. The flashes were observed on 4 June 2016 at the Tall Object Lightning Observatory in Guangzhou, Guangdong Province, China. The optical and electric field characteristics of these flashes were analyzed using synchronized two‐station data from two high‐speed video cameras, one total‐sky lightning channel imager, two lightning channel imagers, and two sets of slow and fast electric field measuring systems. Three upward flashes were initiated sequentially in the field of view of high‐speed video cameras. One of them was initiated approximately 0.35 ms after the return stroke of +CG flash from the Canton Tower, the tallest structure within a 12‐km radius of the +CG flash, while the other two upward flashes were initiated from two other, more distant tall objects, approximately 18 ms after the +CG flash stroke. The initiation of the latter two upward flashes could be caused by the combined effect of the return stroke of +CG flash, its associated continuing current, and K process in the cloud. Each of these three upward flashes contained multiple downward leader/upward return stroke sequences, with the first leader/return stroke sequence of the second and third flashes occurring only after the completion of the last leader/return stroke sequence of the preceding flash. The total number of strokes in the three upward flashes was 13, and they occurred over approximately 1.5 s.

 
more » « less
Award ID(s):
1701484
NSF-PAR ID:
10454022
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
124
Issue:
2
ISSN:
2169-897X
Page Range / eLocation ID:
p. 1050-1063
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    High‐speed video data were used to analyze the initiation and propagation of 36 needles and their associated 306 flickering events observed in a single‐stroke positive cloud‐to‐ground (+CG) flash. The needles occurred during the return‐stroke later stage and the continuing current, within approximate 10 ms after the onset of the +CG return stroke. They initiated near the lateral surface of the predominantly horizontal channel and extended almost perpendicular to that channel. Flickering events are recoil type streamers (or leaders) that retrace the channels created by needles. Flickering events can be repetitive and are classified into four categories based on different scenarios of their occurrence. Needles are caused by the radial motion of negative charge from the hot core of the positive‐leader channel into the positive corona sheath surrounding the core, when the core is rapidly recharged (its radial electric field reversed) by the return‐stroke process and during the following continuing current.

     
    more » « less
  2. null (Ed.)
    Abstract Time-correlated high-speed video and electric field change data for 139 natural, negative cloud-to-ground (CG)-lightning flashes reveal 615 return strokes (RSs) and 29 upward-illumination (UI)-type strokes. Among 121 multi-stroke flashes, 56% visibly connected to more than one ground location for either a RS or UI-type stroke. The number of separate ground-stroke connection locations per CG flash averaged 1.74, with maximum 6. This study examines the 88 subsequent strokes that involved a subsequent stepped leader (SSL), either reaching ground or intercepting a former leader to ground, in 61 flashes. Two basic modes by which these SSLs begin are described and are termed dart - then - stepped leaders herein. One inception mode occurs when a dart leader deflects from the prior main channel and begins propagating as a stepped leader to ground. In these ‘divert’ mode cases, the relevant interstroke time from the prior RS in the channel to the SSL inception from that path is long, ranging from 105 to 204 ms in four visible cases. The alternative mode of SSL inception occurs when a dart leader reaches the end of a prior unsuccessful branch—of an earlier competing dart leader, stepped leader, or initial leader—then begins advancing as a stepped leader toward ground. In this more common ‘branch’ mode (85% of visible cases), there may be no portion of the subsequent RS channel that is shared with a prior RS channel. These two inception modes, and variations among them, can occur in different subsequent strokes of the same flash. 
    more » « less
  3. Abstract

    High‐speed video records of a single‐stroke positive cloud‐to‐ground (+CG) flash were used to examine the evolution of eight needles developing more or less radially from the +CG channel. All these eight needles occurred during the later return‐stroke stage and the following continuing current stage. Six needles, after their initial extension from the lateral surface of the parent channel core, elongated via bidirectional recoil events, which are responsible for flickering, and two of them evolved into negative stepped leaders. For the latter two, the mean extension speed decreased from 5.3 × 106to 3.4 × 105and then to 1.3 × 105 m/s during the initial, recoil‐event, and stepping stages, respectively. The initial needle extension ranged from 70 to 320 m (N = 8), extension via recoil events from 50 to 210 m (N = 6), and extension via stepping from 810 to 1,870 m (N = 2). Compared with needles developing from leader channels, the different behavior of needle flickering, the longer length, the faster extension speed, and the higher flickering rate observed in this work may be attributed to a considerably higher current (rate of charge supply) during the return‐stroke and early continuing‐current stages of +CG flashes.

     
    more » « less
  4. Abstract

    When the electric field below a thunderstorm or other electrified cloud is around 10 kV/m, it is sometimes possible to initiate (“trigger”) an upward‐propagating lightning‐leader by launching a rocket that uncoils a wire from the ground. The triggered leader propagates upward from the tip of the wire lifted by the rocket. When the channel is hot enough, a flash is visible. Triggering is common when the leader carries positive charge, but not when it carries negative charge. This article is about four flashes consisting of triggered negative leaders that branched into low‐altitude regions of positive cloud charge over Langmuir Laboratory in central New Mexico. Measurements of current and the locations of leader channels are available for three of the four flashes. Some current pulses at the ground for Flash 2 originated at negative leader steps more than 3 km away, which is a greater distance than has been reported from video measurements. Flashes 3 and 4 propagated only into thunderstorm lower positive charge, and the average lightning‐charge densities inside the volumes occupied by these two flashes are remarkably close. Our best estimate of density for Flashes 3 and 4 lies between −4.2 and −1.8 C/km3, which is compatible with the large spread in cloud‐charge densities derived from instruments carried on airplanes or balloons into low positive regions in thunderstorms.

     
    more » « less
  5. Abstract

    An advanced nonlinear and nonuniform distributed circuit (RLCG) model of lightning M‐component has been developed. The model accounts for the variation of the series resistanceRof M‐component channel due to its heating by the transient current and its subsequent cooling, longitudinal voltage drop along the channel due to the background continuing current, ohmic losses in the channel corona sheath (represented by shunt conductanceG), and variation of series inductanceLand shunt capacitanceCof the channel with height above ground. The model was tested against the channel‐base current and corresponding close electric fields measured for seven M‐components in negative lightning triggered using the rocket‐and‐wire technique. Detailed sensitivity analysis was performed for one M‐component. The influences of height‐varying series inductance and shunt capacitance and the length of in‐cloud channel (representing the excitation source) on the computed current and field waveforms were found to be relatively insignificant, while the influences of ohmic losses in the channel corona sheath and voltage drop along the grounded channel were significant. The effects of background continuing current level and grounding resistance were significant for M‐field, but not for M‐current. Model‐predicted overall power and current profiles below the cloud base are consistent with the observed M‐component luminosity profiles and are drastically different from the observed downward leader/upward return stroke profiles. The characteristic feature of M‐components, the time shift between the current onset and close electric field peak (essentially absent for leader/return stroke sequences), was well reproduced by our model.

     
    more » « less