skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2114471

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We examined three descending positive leaders at distances of 5–11 km and three descending negative leaders at distances of 6–7 km, all simultaneously imaged by high‐speed framing cameras operating in the visible and UV ranges. UV images (290–370 nm) of the positive leaders each exhibited a strong embellishment at the lower channel end, which was not observed in the corresponding visible images (480–800 nm). In contrast, none of the negative leaders exhibited channel embellishment in the UV range and their morphology in UV was similar to that in the visible. Additionally, no embellishment was seen in four negative leaders imaged in UV only. The observed UV embellishment, which is likely to be the streamer zone at the positive‐leader tip, appeared to undergo expansion‐contraction cycles. We attributed the lack of detectable streamer‐zone emission in the UV range in negative leaders to a much lower streamer generation rate compared to positive leaders. 
    more » « less
  2. Abstract High‐speed video and electric field records of two positive cloud‐to‐ground (+CG) flashes were used to examine the effect of M‐components on needle activity after the return stroke onset. We observed enhancements of needle activity that were associated with the occurrence of M‐components identified by channel luminosity enhancements both at cloud altitudes and near the ground. Full‐fledged M‐components enhance needle activity via injection of negative charge into the bottom of grounded channel and reversing the direction of the radial electric field at the channel core, similar to +CG return strokes. Attempted M‐components, identified by channel luminosity enhancements at the cloud but not near the ground, did not enhance needle activity because of the absence of significant reflection from the ground, which causes electric field reversal at the core. 
    more » « less
  3. Abstract Infrared (IR) luminosity of lightning channel in the 3–5 μm range usually persisted throughout the entire interstroke interval, which is in contrast to the simultaneously recorded visible (0.4–0.8 μm) luminosity that always decayed to an undetectable level prior to a subsequent return stroke pulse. A longer visible luminosity period at the end of flash tended to be associated with a longer IR afterglow period following the decay of visible luminosity (and by inference current) to an undetectable level. At the end of flash, the IR luminosity persisted up to about 1 s, and the median IR afterglow duration was a factor of 10 longer than the median visible luminosity duration. The IR luminosity often exhibited a hump when the visible luminosity was monotonically decaying or undetectable, with the corresponding channel temperature being likely around 3400 K. 
    more » « less
  4. Abstract This study assesses the reliability and limitations of the Geostationary Lightning Mapper (GLM) in detecting continuing currents by comparing observations from ground‐based high‐speed cameras with GLM‐16 data. Our findings show that the GLM's one‐group detection efficiency (DE_1) is 53%, while the more stringent five‐consecutive‐group detection efficiency (DE_5) is 10%. Optical signals detected by the GLM predominantly occur during the early stages of continuing currents. Additionally, there is a notable disparity in detection efficiencies between positive and negative continuing currents, with positive continuing currents being detected more frequently. The application of the logistic regression model developed by Fairman and Bitzer (2022) further illustrates the limitations in continuing current identification. The study underscores the challenges of relying solely on satellite data to monitor and analyze continuing currents, emphasizing the need for advancements in detection technologies and methodologies to reliably detect continuing current at a large spatial scale. 
    more » « less
  5. Abstract Our basic knowledge of downward positive lightning leaders is incomplete due to their rarity and limited ability of VHF mapping systems to image positive streamers. Here, using high‐speed optical records and wideband electric field and magnetic field derivative signatures, we examine in detail the development of a descending positive leader, which extended intermittently via alternating branching at altitudes of 4.2 to 1.9 km and involved luminosity transients separated by millisecond‐scale quiet intervals. We show that the transients (a) are mostly initiated in previously created but already decayed branches, at a distance of the order of 100 m above the branch lower extremity, (b) extend bidirectionally with negative charge moving up, (c) establish a temporary (1 ms or so) steady‐current connection to the negative part of the overall bidirectional leader tree, and (d) exhibit brightening accompanied by new breakdowns at the positive leader end. One of the transients unexpectedly resulted in a negative cloud‐to‐ground discharge. Both positive and negative ends of the transients extended at speeds of 106–107 m/s, while the overall positive leader extension speed was as low as 103–104 m/s. Wideband electric field signatures of the transients were similar to K‐changes, with their millisecond‐ and microsecond‐scale features being associated with the steady current and new breakdowns, respectively. For transients with both ends visible in our optical records, charge transfers and average currents were estimated to be typically a few hundreds of millicoulombs and some hundreds of amperes, respectively. 
    more » « less
  6. Abstract High‐speed video records of a single‐stroke positive cloud‐to‐ground (+CG) flash were used to examine the evolution of eight needles developing more or less radially from the +CG channel. All these eight needles occurred during the later return‐stroke stage and the following continuing current stage. Six needles, after their initial extension from the lateral surface of the parent channel core, elongated via bidirectional recoil events, which are responsible for flickering, and two of them evolved into negative stepped leaders. For the latter two, the mean extension speed decreased from 5.3 × 106to 3.4 × 105and then to 1.3 × 105 m/s during the initial, recoil‐event, and stepping stages, respectively. The initial needle extension ranged from 70 to 320 m (N = 8), extension via recoil events from 50 to 210 m (N = 6), and extension via stepping from 810 to 1,870 m (N = 2). Compared with needles developing from leader channels, the different behavior of needle flickering, the longer length, the faster extension speed, and the higher flickering rate observed in this work may be attributed to a considerably higher current (rate of charge supply) during the return‐stroke and early continuing‐current stages of +CG flashes. 
    more » « less
  7. Abstract Positive lightning discharges to ground (+CGs) are relatively rare and considerably less studied than negative ones (-CGs). We present observations of unusual transient phenomena occurring in +CGs and discuss their mechanisms. One of them is a brief electric coupling to a concurrent -CG initiated from a 257-m tall tower located 11 km from the +CG channel. A transient process (stroke) in the -CG flash appears to cause a transient luminosity enhancement (M-component) in the +CG channel. In the course of these essentially simultaneous transients, positive charge is in effect taken from the ground at the position of the tower and injected into the ground at the position of the +CG channel. Recoil leaders reactivating decayed +CG branches near the cloud base are each observed to cause a transient luminosity decrease (dip), as opposed to the expected luminosity increase, in the +CG main channel. 
    more » « less
  8. Abstract Previous studies have shown that subsequent leaders in positive cloud‐to‐ground lightning (+CG) flashes rarely traverse pre‐existing channels to ground. In this paper, we present evidence that this actually can be common, at least for some thunderstorms. Observations of +CG flashes in a supercell storm in Argentina by Córdoba Argentina Marx Meter Array (CAMMA) are presented, in which 54 (64%) of 84 multiple‐stroke +CG flashes had subsequent leaders following a pre‐existing channel to ground. These subsequent positive leaders are found to behave similarly to their negative counterparts, including propagation speeds along pre‐existing channels with a median of 8 × 106 m/s, which is comparable to that of negative dart leaders. Two representative multiple‐stroke +CG flashes are presented and discussed in detail. The observations reported herein call for an update to the traditional explanation of the disparity between positive and negative lightning. 
    more » « less
  9. Abstract High‐speed video data were used to analyze the initiation and propagation of 36 needles and their associated 306 flickering events observed in a single‐stroke positive cloud‐to‐ground (+CG) flash. The needles occurred during the return‐stroke later stage and the continuing current, within approximate 10 ms after the onset of the +CG return stroke. They initiated near the lateral surface of the predominantly horizontal channel and extended almost perpendicular to that channel. Flickering events are recoil type streamers (or leaders) that retrace the channels created by needles. Flickering events can be repetitive and are classified into four categories based on different scenarios of their occurrence. Needles are caused by the radial motion of negative charge from the hot core of the positive‐leader channel into the positive corona sheath surrounding the core, when the core is rapidly recharged (its radial electric field reversed) by the return‐stroke process and during the following continuing current. 
    more » « less