skip to main content


Title: Highly efficient and salt rejecting solar evaporation via a wick-free confined water layer
Abstract

Recent advances in thermally localized solar evaporation hold significant promise for vapor generation, seawater desalination, wastewater treatment, and medical sterilization. However, salt accumulation is one of the key bottlenecks for reliable adoption. Here, we demonstrate highly efficient (>80% solar-to-vapor conversion efficiency) and salt rejecting (20 weight % salinity) solar evaporation by engineering the fluidic flow in a wick-free confined water layer. With mechanistic modeling and experimental characterization of salt transport, we show that natural convection can be triggered in the confined water. More notably, there exists a regime enabling simultaneous thermal localization and salt rejection, i.e., natural convection significantly accelerates salt rejection while inducing negligible additional heat loss. Furthermore, we show the broad applicability by integrating this confined water layer with a recently developed contactless solar evaporator and report an improved efficiency. This work elucidates the fundamentals of salt transport and offers a low-cost strategy for high-performance solar evaporation.

 
more » « less
NSF-PAR ID:
10363063
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
13
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Membrane technologies that enable the efficient purification of impaired water sources are needed to address growing water scarcity. However, state-of-the-art engineered membranes are constrained by a universal, deleterious trade-off where membranes with high water permeability lack selectivity. Current membranes also poorly remove low–molecular weight neutral solutes and are vulnerable to degradation from oxidants used in water treatment. We report a water desalination technology that uses applied pressure to drive vapor transport through membranes with an entrapped air layer. Since separation occurs due to a gas-liquid phase change, near-complete rejection of dissolved solutes including sodium chloride, boron, urea, andN-nitrosodimethylamine is observed. Membranes fabricated with sub-200-nm-thick air layers showed water permeabilities that exceed those of commercial membranes without sacrificing salt rejection. We also find the air-trapping membranes tolerate exposure to chlorine and ozone oxidants. The results advance our understanding of evaporation behavior and facilitate high-throughput ultraselective separations.

     
    more » « less
  2. Abstract

    This paper presents work on the heteroepitaxy of salts, specifically fluorides, on semiconductors and heteroepitaxy of semiconductors on salts. Fluorides layers are deposited on commercial Gallium Arsenide (GaAs) wafers followed by the heteroepitaxial growth of GaAs using metal‐organic chemical vapor deposition (MOCVD). The fluoride layers consist of 2 lattice‐engineered layers of alkaline‐earth compounds to match with GaAs, and are used to sandwich another alkaline‐earth compound with higher water‐solubility as a sacrificial layer. The triple fluoride layers enable liftoff of free‐standing semiconductor films which can be further transferred to desirable substrates. 2D‐X‐ray Diffraction (2D‐XRD) measurements confirm epitaxial growth of both the fluorides and the subsequently grown GaAs films. Single junction (SJ) solar cell devices based on thus prepared films show a power conversion efficiency (PCE) of 10.3% under 1 sun illumination. After the completion of device fabrications, the GaAs film is lifted off from the substrate by a novel water‐assisted epitaxial liftoff (H2O‐ELO) technique and transferred to a cheaper substrate. The original GaAs wafer is recycled and reused twice. Devices based on reused substrates show no significant degradation in performance. The semiconductor‐salt‐semiconductor scheme has great implications in high‐performance, flexible, and large‐area electronics.

     
    more » « less
  3. Solar-thermal evaporation is a promising technology for energy-efficient desalination, but salt accumulation on solar absorbers and system longevity are the major challenges that hinder its widespread application. In this study, we present a sustainable Janus wood evaporator that overcomes these challenges and achieves a record-high evaporation efficiencies in hypersaline water, one of the most difficult water sources to treat via desalination. The Janus wood evaporator has asymmetric surface wettability, where the top layer acts as a hydrophobic solar absorber with water blockage and salt resistance, while the bottom hydrophilic wood layer allows for rapid water replenishment and superior thermal insulation. An evaporation efficiency of 82.0% is achieved for 20% NaCl solution under 1 sun, and persistent salt-resistance is observed during a 10-cycle long-term test. To ensure the environmental impact of the Janus wood evaporator, for the first time, a life cycle assessment (LCA) is conducted to compare this Janus wood evaporator with the emerging Janus evaporators, indicating a functional and more sustainable opportunity for off-grid desalination and humanitarian efforts. 
    more » « less
  4. Abstract

    Efficient mass transport and selective salt rejection are highly desirable for solar or thermally driven seawater desalination, but its realization is challenging. Here a new liquid supply mechanism is proposed, i.e., ionic pumping effect, using a polyelectrolyte hydrogel foam (PHF), demonstrated with poly(sodium acrylate) [P(SA)] embedded in a microporous carbon foam (CF). The PHF simultaneously possesses high osmotic pressure for liquid transport and a strong salt‐rejection effect. The PHF is able to sustain high flux of ≈24 L per m2per hour (LMH), comparable to the evaporative flux under 15 suns, and a salt rejection ratio over 80%. Compared to the porous carbon foam without the polyelectrolyte hydrogel, i.e., with only the capillary pumping effect, the PHF yields a 42.4% higher evaporative flux, at ≈1.6 LMH with DI water and ≈1.3 LMH with simulated seawater under one‐sun condition due to the more efficient ionic liquid pumping. More importantly, thanks to the strong salt‐rejection effect, the PHF shows a continuous and stable solar‐driven desalination flux of ≈1.3 LMH under one‐sun over 72 h, which has not been achieved before. The successful demonstration of both efficient ionic pumping and strong salt rejection effects makes the PHF an attractive platform for sustainable solar‐driven desalination.

     
    more » « less
  5. Water scarcity and waste mismanagement are global crises that threaten the health of populations worldwide and a sustainable future. In order to help mitigate both these issues, a solar desalination device composed entirely of fallen leaves and guar – both natural materials – has been developed and demonstrated herein. This sustainable desalinator realizes an evaporation rate of 2.53 kg m −2 h −1 under 1 sun irradiance, and achieves consistent performance over an extended exposure period. Furthermore, it functions efficiently under a variety of solar intensities and in high salinity environments, and can produce water at salinities well within the acceptable levels for human consumption. Such strong performance in a large variety of environmental conditions is made possible by its excellent solar absorption, superb and rapid water absorption, low thermal conductivity, and considerable salt rejection abilities. Composed primarily of biowaste material and boasting a simple fabrication process, this leaf-guar desalinator provides a low-cost and sustainable avenue for alleviating water scarcity and supporting a green path forward. 
    more » « less