skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Osmotic Pumping and Salt Rejection by Polyelectrolyte Hydrogel for Continuous Solar Desalination
Abstract Efficient mass transport and selective salt rejection are highly desirable for solar or thermally driven seawater desalination, but its realization is challenging. Here a new liquid supply mechanism is proposed, i.e., ionic pumping effect, using a polyelectrolyte hydrogel foam (PHF), demonstrated with poly(sodium acrylate) [P(SA)] embedded in a microporous carbon foam (CF). The PHF simultaneously possesses high osmotic pressure for liquid transport and a strong salt‐rejection effect. The PHF is able to sustain high flux of ≈24 L per m2per hour (LMH), comparable to the evaporative flux under 15 suns, and a salt rejection ratio over 80%. Compared to the porous carbon foam without the polyelectrolyte hydrogel, i.e., with only the capillary pumping effect, the PHF yields a 42.4% higher evaporative flux, at ≈1.6 LMH with DI water and ≈1.3 LMH with simulated seawater under one‐sun condition due to the more efficient ionic liquid pumping. More importantly, thanks to the strong salt‐rejection effect, the PHF shows a continuous and stable solar‐driven desalination flux of ≈1.3 LMH under one‐sun over 72 h, which has not been achieved before. The successful demonstration of both efficient ionic pumping and strong salt rejection effects makes the PHF an attractive platform for sustainable solar‐driven desalination.  more » « less
Award ID(s):
1762560
PAR ID:
10459433
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Energy Materials
Volume:
9
Issue:
38
ISSN:
1614-6832
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Solar-driven interfacial evaporation shows great prospects for seawater desalination with its rapid fast evaporation rate and high photothermal conversion efficiency. Here, a sustainable, biodegradable, non-toxic, and highly efficient full ocean biomass-based solar-driven evaporator is reported, which is composed of chitosan (CS) hydrogel as the hydratable skeleton and cuttlefish ink (CI) as the photothermal material. Under solar irradiation, the cuttlefish ink powder harvests solar energy and heats the surrounding water. Simultaneously, the water in the three-dimensional network of chitosan hydrogel is rapidly replenished by the interconnected porous structure and the hydrophilic functional groups attached to the polymer chains. With its enlarged evaporation surface, high solar absorptance, adequate water transportation, good salt drainage, and heat localization, the CI/CS-based evaporator achieves a remarkable evaporation rate of 4.1 kg m −2 h −1 under one sun irradiance (1 kW m −2 ) with high-quality freshwater yields. This full ocean biomass-based evaporator with abundant raw material availability provides new possibilities for an efficient, stable, sustainable, and environmentally friendly solar evaporator with guaranteed water quality. 
    more » « less
  2. Configured with a rapid evaporation rate and a high photothermal conversion efficiency, solar-driven interfacial evaporation displays considerable promise for seawater desalination. Inspired by the versatility and deployability of origami-based structures, we demonstrate a portable waterbomb origami pattern-based tower-like structure, named an “origami tower”, as a convertible photothermal evaporator floating on water for efficient solar-driven interfacial desalination. The origami tower has predictable deformability, featuring reversible radial expansion and contraction radially accompanied by small changes in the axial direction. The reversible adjustability of the origami tower offers convenience for transportation and storage, while the quick expansion into its tower shape provides rapid deployment capabilities. Benefiting from an enlarged evaporation surface, excellent light trapping ability, and heat localization, the origami-tower photothermal evaporator yields an evaporation rate of 2.67 kg m −2 h −1 under one sun illumination. This reversible 3D origami-based photothermal evaporator opens a new avenue for building a portable and efficient solar thermal desalination system. 
    more » « less
  3. Water scarcity and waste mismanagement are global crises that threaten the health of populations worldwide and a sustainable future. In order to help mitigate both these issues, a solar desalination device composed entirely of fallen leaves and guar – both natural materials – has been developed and demonstrated herein. This sustainable desalinator realizes an evaporation rate of 2.53 kg m −2 h −1 under 1 sun irradiance, and achieves consistent performance over an extended exposure period. Furthermore, it functions efficiently under a variety of solar intensities and in high salinity environments, and can produce water at salinities well within the acceptable levels for human consumption. Such strong performance in a large variety of environmental conditions is made possible by its excellent solar absorption, superb and rapid water absorption, low thermal conductivity, and considerable salt rejection abilities. Composed primarily of biowaste material and boasting a simple fabrication process, this leaf-guar desalinator provides a low-cost and sustainable avenue for alleviating water scarcity and supporting a green path forward. 
    more » « less
  4. Solar-thermal evaporation is a promising technology for energy-efficient desalination, but salt accumulation on solar absorbers and system longevity are the major challenges that hinder its widespread application. In this study, we present a sustainable Janus wood evaporator that overcomes these challenges and achieves a record-high evaporation efficiencies in hypersaline water, one of the most difficult water sources to treat via desalination. The Janus wood evaporator has asymmetric surface wettability, where the top layer acts as a hydrophobic solar absorber with water blockage and salt resistance, while the bottom hydrophilic wood layer allows for rapid water replenishment and superior thermal insulation. An evaporation efficiency of 82.0% is achieved for 20% NaCl solution under 1 sun, and persistent salt-resistance is observed during a 10-cycle long-term test. To ensure the environmental impact of the Janus wood evaporator, for the first time, a life cycle assessment (LCA) is conducted to compare this Janus wood evaporator with the emerging Janus evaporators, indicating a functional and more sustainable opportunity for off-grid desalination and humanitarian efforts. 
    more » « less
  5. Membrane technologies that enable the efficient purification of impaired water sources are needed to address growing water scarcity. However, state-of-the-art engineered membranes are constrained by a universal, deleterious trade-off where membranes with high water permeability lack selectivity. Current membranes also poorly remove low–molecular weight neutral solutes and are vulnerable to degradation from oxidants used in water treatment. We report a water desalination technology that uses applied pressure to drive vapor transport through membranes with an entrapped air layer. Since separation occurs due to a gas-liquid phase change, near-complete rejection of dissolved solutes including sodium chloride, boron, urea, andN-nitrosodimethylamine is observed. Membranes fabricated with sub-200-nm-thick air layers showed water permeabilities that exceed those of commercial membranes without sacrificing salt rejection. We also find the air-trapping membranes tolerate exposure to chlorine and ozone oxidants. The results advance our understanding of evaporation behavior and facilitate high-throughput ultraselective separations. 
    more » « less