skip to main content


Title: Sim-to-real localization: Environment resilient deep ensemble learning for guided wave damage localization

Guided ultrasonic wave localization systems use spatially distributed sensor arrays and wave propagation models to detect and locate damage across a structure. Environmental and operational conditions, such as temperature or stress variations, introduce uncertainty into guided wave data and reduce the effectiveness of these localization systems. These uncertainties cause the models used by each localization algorithm to fail to match with reality. This paper addresses this challenge with an ensemble deep neural network that is trained solely with simulated data. Relative to delay-and-sum and matched field processing strategies, this approach is demonstrated to be more robust to temperature variations in experimental data. As a result, this approach demonstrates superior accuracy with small numbers of sensors and greater resilience to spatially nonhomogeneous temperature variations over time.

 
more » « less
Award ID(s):
1839704
NSF-PAR ID:
10363113
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Acoustical Society of America (ASA)
Date Published:
Journal Name:
The Journal of the Acoustical Society of America
Volume:
151
Issue:
2
ISSN:
0001-4966
Page Range / eLocation ID:
p. 1325-1336
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Damage detection and localization remain challenging research areas in structural health monitoring. Guided wave-based methods that utilize signal processing tools (e.g., matched field processing and delay-and-sum localization) have enjoyed success in damage detection. To locate damage, such techniques rely on a model of wave propagation through materials. Measured data is then compared with these models to determine the origin of a wave. As a result, the analytical model and actual data may have a mismatch due to environmental variations or a lack of knowledge about the material. Deep neural networks are a class of machine learning algorithms that learn a non-linear functional mapping. The paper presents a deep neural network-based approach to damage localization. We use simulated data to assess the performance of localization frameworks under varying levels of noise and other uncertainty in our ultrasonic signals. 
    more » « less
  2. Ultrasonic guided waves are commonly used to localize structural damage in infrastructures such as buildings, airplanes, bridges. Damage localization can be viewed as an inverse problem. Physical model based techniques are popular for guided wave based damage localization. The performance of these techniques depend on the degree of faithfulness with which the physical model describes wave propagation. External factors such as environmental variations and random noise are a source of uncertainty in wave propagation. The physical modeling of uncertainty in an inverse problem is still a challenging problem. In this work, we propose a deep learning based model for robust damage localization in presence of uncertainty. Wave data with uncertainty is simulated to reflect variations due to external factors and Gaussian noise is added to reflect random noise in the environment. After evaluating the localization error on test data with uncertainty, we observe that the deep learning model trained with uncertainty can learn robust representations. The approach shows the potential for dealing with uncertainty in physical science problems using deep learning models. 
    more » « less
  3. Abstract

    While guided wave structural health monitoring (SHM) is widely researched for ensuring safety, estimating performance deterioration, and detecting damage in structures, it experiences setbacks in accuracy due to varying environmental, sensor, and material factors. To combat these challenges, environmentally variable guided wave data is often stretched with temperature compensation methods, such as the scale transform and optimal signal stretch, to match a baseline signal and enable accurate damage detection. Yet, these methods fail for large environmental changes. This paper addresses this challenge by demonstrating a machine learning method to predict stretch factors. This is accomplished with feed-forward neural networks that approximate the complex velocity change function. We demonstrate that our machine learning approach outperforms the prior art on simulated Lamb wave data and is robust with extreme velocity variations. While our machine learning models do not conduct temperature compensation, their accurate stretch factor predictions serve as a proof of concept that a better model is plausible.

     
    more » « less
  4. Guided wave testing is a popular approach for monitoring the structural integrity of infrastructures. We focus on the primary task of damage detection, where signal processing techniques are commonly employed. The detection performance is affected by a mismatch between the wave propagation model and experimental wave data. External variations, such as temperature, which are difficult to model, also affect the performance. While deep learning models can be an alternative detection method, there is often a lack of real-world training datasets. In this work, we counter this challenge by training an ensemble of variational autoencoders only on simulation data with a wave physics-guided adversarial component. We set up an experiment with non-uniform temperature variations to test the robustness of the methods. We compare our scheme with existing deep learning detection schemes and observe superior performance on experimental data. 
    more » « less
  5. null (Ed.)
    Environmental effects are a significant challenge in guided wave structural health monitoring systems. These effects distort signals and increase the likelihood of false alarms. Many research papers have studied mitigation strategies for common variations in guided wave datasets reproducible in a lab, such as temperature and stress. There are fewer studies and strategies for detecting damage under more unpredictable outdoor conditions. This article proposes a long short-term principal component analysis reconstruction method to detect synthetic damage under highly variational environments, like precipitation, freeze, and other conditions. The method does not require any temperature or other compensation methods and is tested by approximately seven million guided wave measurements collected over 2 years. Results show that our method achieves an area under curve score of near 0.95 when detecting synthetic damage under highly variable environmental conditions. 
    more » « less