skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Influence of strain and dislocations on GaSb/GaAs quantum dots: From nested to staggered band alignment
We investigate the influence of strain and dislocations on band alignment in GaSb/GaAs quantum dot systems. Composition profiles from cross-sectional scanning tunneling microscopy images are interpolated onto a finite element mesh in order to calculate the distribution of local elastic strain, which is converted to a spatially varying band alignment using deformation potential theory. Our calculations predict that dislocation-induced strain relaxation and charging lead to significant local variations in band alignment. Furthermore, misfit strain induces a transition from a nested (type I) to a staggered (type II) band alignment. Although dislocation-induced strain relaxation prevents the type I to type II transition, electrostatic charging at dislocations induces the staggered band alignment once again.  more » « less
Award ID(s):
1810280
PAR ID:
10363119
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Journal of Applied Physics
Volume:
131
Issue:
8
ISSN:
0021-8979
Page Range / eLocation ID:
Article No. 085703
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Semiconductor heterojunctions are ubiquitous components of modern electronics. Their properties depend crucially on the band alignment at the interface, which may exhibit straddling gap (type-I), staggered gap (type-II) or broken gap (type-III). The distinct characteristics and applications associated with each alignment make it highly desirable to switch between them within a single material. Here we demonstrate an electrically tunable transition between type-I and type-II band alignments in MoSe2/WS2heterobilayers by investigating their luminescence and photocurrent characteristics. In their intrinsic state, these heterobilayers exhibit a type-I band alignment, resulting in the dominant intralayer exciton luminescence from MoSe2. However, the application of a strong interlayer electric field induces a transition to a type-II band alignment, leading to pronounced interlayer exciton luminescence. Furthermore, the formation of the interlayer exciton state traps free carriers at the interface, leading to the suppression of interlayer photocurrent and highly nonlinear photocurrent-voltage characteristics. This breakthrough in electrical band alignment control, interlayer exciton manipulation, and carrier trapping heralds a new era of versatile optical and (opto)electronic devices composed of van der Waals heterostructures. 
    more » « less
  2. Abstract Recent theoretical work has predicted that dislocation patterning induces anisotropic flat bands in the electronic band diagram, which can lead to unusual effects such as unconventional superconductivity. This work develops a reduced-dimensional framework to provide insights into their origin. An effective one-dimensional dislocation potential is constructed by averaging over the spatial distributions of dislocations along a singular direction. The resulting model introduces a parameter that quantifies the strain modulation, thereby providing a transparent approach to analyze the role of dislocation strain in leading to flat band formation. 
    more » « less
  3. Abstract The band alignment of sputtered NiO on β -Ga 2 O 3 was measured by x-ray photoelectron spectroscopy for post-deposition annealing temperatures up to 600 °C. The band alignment is type II, staggered gap in all cases, with the magnitude of the conduction and valence band offsets increasing monotonically with annealing temperature. For the as-deposited heterojunction, Δ E V = −0.9 eV and Δ E C = 0.2 eV, while after 600 °C annealing the corresponding values are Δ E V = −3.0 eV and Δ E C = 2.12 eV. The bandgap of the NiO was reduced from 3.90 eV as-deposited to 3.72 eV after 600 °C annealing, which accounts for most of the absolute change in Δ E V −Δ E C . Differences in thermal budget may be at least partially responsible for the large spread in band offsets reported in the literature for this heterojunction. Other reasons could include interfacial disorder and contamination. Differential charging, which could shift peaks by different amounts and could potentially be a large source of error, was not observed in our samples. 
    more » « less
  4. Abstract GeSn photodetectors monolithically grown on Ge virtual substrates demonstrate mid‐wave infrared (MWIR) detection at room temperature. The lattice mismatch between GeSn and Ge causes dislocations and compressive strain, creating leakage pathways and unwanted indirect band transitions. Designed thin Ge0.91Sn0.09triple‐step buffer layers of ≈175 nm total thickness reduce dislocations and enable full relaxation, showing 100% lattice relaxation and smooth surface roughness of 0.83 nm with shorter auto‐correlation length in surface morphology compared to single‐step buffers. Ge1‐xSnxphotodetectors (x= 0.09, 0.12, and 0.15) on triple‐step buffers withn‐i‐pconfigurations achieve lattice strain relaxations of 99%, 88%, and 80%, respectively. Ge0.91Sn0.09and Ge0.88Sn0.12show gradual variation in auto‐correlation amplitude, while Ge0.85Sn0.15shows an increase due to lattice mismatch. Shockley–Read–Hall recombination current dominates at low reverse bias due to mismatch‐induced dislocations, while band‐to‐band tunneling current dominates at higher reverse bias due to narrowing bandgap under strong electric fields. The photodetectors show extended spectral response with increasing Sn composition ofi‐GeSn active layer sandwiched by barriers. Ge0.88Sn0.12and Ge0.85Sn0.15exhibit extended wavelength cut‐offs of 3.12 and 3.27 µm at room temperature, demonstrating significant potential for silicon‐based MWIR applications. 
    more » « less
  5. In this work, we performed in situ nanoindentation in TEM to capture the real-time 〈c + a〉 dislocation and twinning activities in pure Mg during loading and unloading. We demonstrated that the screw component of 〈c + a〉 dislocations glides continuously, while the edge components rapidly become sessile during loading. The twin tip propagation is intermittent, whereas the twin boundary migration is more continuous. During unloading, we observed the elastic strain relaxation causes both 〈c + a〉 dislocation retraction and detwinning. Moreover, we note that the plastic zone comprised of 〈c + a〉 dislocations in Mg is well-defined, which contrasts with the diffused plastic zones observed in face-centered cubic metals under the nanoindentation impressions. Additionally, molecular dynamics simulations were performed to study the formation and evolution of deformation-induced crystallographic defects at the early stages of indentation. We observed that, in addition to 〈a〉 dislocations, the I1 stacking fault bounded with a 〈1/2c+p〉 Frank loop can be generated from the plastic zone ahead of the indenter, and potentially serve as a nucleation source for abundant 〈c + a〉 dislocations observed experimentally. These new findings are anticipated to provide new knowledge on the deformation mechanisms of Mg, which are difficult to obtain through conventional ex situ approaches. These observations may serve as a baseline for simulation work that investigate the dynamics of 〈c + a〉 dislocation slip and twinning in Mg and alloys. 
    more » « less