skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1810280

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Graphene has a great potential to replace silicon in prospective semiconductor industries due to its outstanding electronic and transport properties; nonetheless, its lack of energy bandgap is a substantial limitation for practical applications. To date, straining graphene to break its lattice symmetry is perhaps the most efficient approach toward realizing bandgap tunability in graphene. However, due to the weak lattice deformation induced by uniaxial or in‐plane shear strain, most strained graphene studies have yielded bandgaps <1 eV. In this work, a modulated inhomogeneous local asymmetric elastic–plastic straining is reported that utilizes GPa‐level laser shocking at a high strain rate (dε/dt) ≈ 106–107s−1, with excellent formability, inducing tunable bandgaps in graphene of up to 2.1 eV, as determined by scanning tunneling spectroscopy. High‐resolution imaging and Raman spectroscopy reveal strain‐induced modifications to the atomic and electronic structure in graphene and first‐principles simulations predict the measured bandgap openings. Laser shock modulation of semimetallic graphene to a semiconducting material with controllable bandgap has the potential to benefit the electronic and optoelectronic industries. 
    more » « less
  2. N incorporation mechanisms in GaAs1−xNx alloys are probed using combined experimental and computational Rutherford backscattering spectrometry and nuclear reaction analysis angular yield scans. For xN < 0.025, in addition to substitutional nitrogen, NAs, (N-N)As, and (N-As)As split-interstitials are observed. However, for xN ≥ 0.025, evidence for N tetrahedral interstitials, Ntetra, emerges. We propose a mechanism for stabilization of Ntetra in which the elastic interaction between Ntetra and NAs is induced by the opposite signs of their misfit volumes. This work opens opportunities for exploring the formation of Ntetra and its influence on the properties of a variety of highly mismatched alloys. 
    more » « less
  3. We have investigated the influence of non-stoichiometry and local atomic environments on carrier transport in GaAs(N)Bi alloy films using local-electrode atom probe tomography (LEAP) in conjunction with time-resolved terahertz photoconductivity measurements. The local concentrations of N, Bi, and excess As, as well as Bi pair correlations, are quantified using LEAP. Using time-resolved THz photoconductivity measurements, we show that carrier transport is primarily limited by excess As, with the highest carrier mobilities for layers with yBi > 0.035. 
    more » « less
  4. GeSnC alloys offer a route to direct bandgap semiconductors for CMOS-compatible lasers, but the use of CBr4 as a carbon source was shown to reduce Sn incorporation by 83%–92%. We report on the role of thermally cracked H in increasing Sn incorporation by 6x–9.5x, restoring up to 71% of the lost Sn, and attribute this increase to removal of Br from the growth surface as HBr prior to formation of volatile groups such as SnBr4. Furthermore, as the H flux is increased, Rutherford backscattering spectroscopy reveals a monotonic increase in both Sn and carbon incorporation. X-ray diffraction reveals tensile-strained films that are pseudomorphic with the substrate. Raman spectroscopy suggests substitutional C incorporation; both x-ray photoelectron spectroscopy and Raman suggest a lack of graphitic carbon or its other phases. For the lowest growth temperatures, scanning transmission electron microscopy reveals nanovoids that may account for the low Sn substitutional fraction in those layers. Conversely, the sample grown at high temperatures displayed abrupt interfaces, notably devoid of any voids, tin, or carbon-rich clusters. Finally, the surface roughness decreases with increasing growth temperature. These results show that atomic hydrogen provides a highly promising route to increase both Sn and C to achieve a strongly direct bandgap for optical gain and active silicon photonics. 
    more » « less
  5. We probe the conduction-band offsets (CBOs) and confined states at GaAs/GaAsNBi quantum wells (QWs). Using a combination of capacitance–voltage (C–V) measurements and self-consistent Schrödinger–Poisson simulations based on the effective mass approximation, we identify an N-fraction dependent increase in CBO, consistent with trends predicted by the band anti-crossing model. Using the computed confined electron states in conjunction with photoluminescence spectroscopy data, we show that N mainly influences the conduction band and confined electron states, with a relatively small effect on the valence band and confined hole states in the quaternary QWs. This work provides important insight toward tailoring CBO and confined electron energies, both needed for optimizing infrared optoelectronic devices. 
    more » « less
  6. We investigate the influence of strain and dislocations on band alignment in GaSb/GaAs quantum dot systems. Composition profiles from cross-sectional scanning tunneling microscopy images are interpolated onto a finite element mesh in order to calculate the distribution of local elastic strain, which is converted to a spatially varying band alignment using deformation potential theory. Our calculations predict that dislocation-induced strain relaxation and charging lead to significant local variations in band alignment. Furthermore, misfit strain induces a transition from a nested (type I) to a staggered (type II) band alignment. Although dislocation-induced strain relaxation prevents the type I to type II transition, electrostatic charging at dislocations induces the staggered band alignment once again. 
    more » « less