Abstract Ecological, health and environmental concerns are driving the need for bio-resourced foams for the building industry. In this paper, we examine foams made from polylactic acid (PLA) and micro cellulose fibrils (MCF). To ensure no volatile organic compounds in the foam, supercritical CO2(sc-CO2) physical foaming of melt mixed systems was conducted. Mechanical and thermal conductivity properties were determined and applied to a net zero energy model house. The results showed that MCF had a concentration dependent impact on the foams. First structurally, the presence of MCF led to an initial increase followed by a decrease of open porosity, higher bulk density, lower expansion ratios and cell size. Differential Scanning Calorimetry and Scanning Electron Microscopy revealed that MCF decreased the glass transition of PLA allowing for a decrease in cell wall thickness when MCF was added. The mechanical performance initially increased with MCF and then decreased. This trend was mimicked by thermal insulation which initially improved. Biodegradation tests showed that the presence of cellulose in PLA improved the compostability of the foams. A maximum comparative mineralization of 95% was obtained for the PLA foam with 3 wt.% MCF when expressed as a fractional percentage of the pure cellulose reference. Energy simulations run on a model house showed that relative to an insulation of polyurethane, the bio-resourced foams led to no more than a 12% increase in heating and cooling. The energy efficiency of the foams was best at low MCF fractions. 
                        more » 
                        « less   
                    
                            
                            Carbon Capture Utilization for Biopolymer Foam Manufacture: Thermal, Mechanical and Acoustic Performance of PCL/PHBV CO2 Foams
                        
                    
    
            Biopolymer foams manufactured using CO2 enables a novel intersection for economic, environmental, and ecological impact but limited CO2 solubility remains a challenge. PHBV has low solubility in CO2 while PCL has high CO2 solubility. In this paper, PCL is used to blend into PBHV. Both unfoamed and foamed blends are examined. Foaming the binary blends at two depressurization stages with subcritical CO2 as the blowing agent, produced open-cell and closed-cell foams with varying cellular architecture at different PHBV concentrations. Differential Scanning Calorimetry results showed that PHBV had some solubility in PCL and foams developed a PCL rich, PHBV rich and mixed phase. Scanning Electron Microscopy and pcynometry established cell size and density which reflected benefits of PCL presence. Acoustic performance showed limited benefits from foaming but mechanical performance of foams showed a significant impact from PHBV presence in PCL. Thermal performance reflected that foams were affected by the blend thermal conductivity, but the impact was significantly higher in the foams than in the unfoamed blends. The results provide a pathway to multifunctional performance in foams of high performance biopolymers such as PBHV through harnessing the CO2 miscibility of PCL. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1728096
- PAR ID:
- 10381429
- Date Published:
- Journal Name:
- Polymers
- Volume:
- 13
- Issue:
- 15
- ISSN:
- 2073-4360
- Page Range / eLocation ID:
- 2559
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Developing an environmentally benign styrene foam is a critical environmental need. Supercritical CO2 use in foams has proven to be a valuable path. Adding fillers to increase bubble nucleation has been pursued concurrently. A prominent filler used is high surface area fillers, such as smectic clays. However, all studies to date show a limit of 152% in compressive moduli and 260% in the compressive stress. The values, even with such gains, limit structural application. A seminal work in 1987 by Suh and Cotton proved that carbonyl linkages in calcium carbonates and CO2 interact and impact nucleation efficiency and performance in supercritical CO2 foams. In this paper, a high surface area clay (layer double hydroxides) which begins in an exfoliated state, then functionalized with a long chain alkyl carboxylate (stearic acid) is synthesized. The result is a remarkable multi-fold improvement to the compressive properties in comparison to polystyrene (PS); a 268% and 512% increase in compressive modulus and strength, respectively. Using a pre-delaminated approach, the higher surface area was achieved in the clays. The presence of the stearate improved the interactions between the clay galleries and PS through hydrophobic-hydrophobic interactions. The glass transition temperature of the nanocomposites was observed to shift to higher values after foaming. The results point to a new path to increase performance using a pre-delaminated clay with functional groups for environmentally benign foamsmore » « less
- 
            Abstract Polymers play an integral role in various applications, from everyday use to advanced technologies. In the era of machine learning (ML), polymer informatics has become a vital field for efficiently designing and developing polymeric materials. However, the focus of polymer informatics has predominantly centered on single-component polymers, leaving the vast chemical space of polymer blends relatively unexplored. This study employs a high-throughput molecular dynamics (MD) simulation combined with active learning (AL) to uncover polymer blends with enhanced thermal conductivity (TC) compared to the constituent single-component polymers. Initially, the TC of about 600 amorphous single-component polymers and 200 amorphous polymer blends with varying blending ratios are determined through MD simulations. The optimal representation method for polymer blends is identified, which involves a weighted sum approach that extends existing polymer representation from single-component polymers to polymer blends. An AL framework, combining MD simulation and ML, is employed to explore the TC of approximately 550,000 unlabeled polymer blends. The AL framework proves highly effective in accelerating the discovery of high-performance polymer blends for thermal transport. Additionally, we delve into the relationship between TC, radius of gyration (Rg), and hydrogen bonding, highlighting the roles of inter- and intra-chain interactions in thermal transport in amorphous polymer blends. A significant positive association between TC andRgimprovement and an indirect contribution from H-bond interaction to TC enhancement are revealed through a log-linear model and an odds ratio calculation, emphasizing the impact of increasingRgand H-bond interactions on enhancing polymer blend TC.more » « less
- 
            Electrospun fibrous scaffolds made from polymers such as polycaprolactone (PCL) have been used in drug delivery and tissue engineering for their viscoelasticity, biocompatibility, biodegradability, and tunability. Hydrophobicity and the prolonged degradation of PCL causes inhibition of the natural tissue-remodeling processes. Poliglecaprone (PGC), which consists of PCL and Poly (glycolic acid) (PGA), has better mechanical properties and a shorter degradation time compared to PCL. A blend between PCL and PGC called PPG can give enhanced shared properties for biomedical applications. In this study, we fabricated a blend of PCL and PGC nanofibrous scaffold (PPG) at different ratios of PGC utilizing electrospinning. We studied the physicochemical and biological properties, such as morphology, crystallinity, surface wettability, degradation, surface functionalization, and cellular compatibility. All PPG scaffolds exhibited good uniformity in fiber morphology and improved mechanical properties. The surface wettability and degradation studies confirmed that increasing PGC in the PPG composites increased hydrophilicity and scaffold degradation respectively. Cell viability and cytotoxicity results showed that the scaffold with PGC was more viable and less toxic than the PCL-only scaffolds. PPG fibers were successfully coated with polydopamine (PDA) and collagen to improve degradation, biocompatibility, and bioactivity. The nanofibrous scaffolds synthesized in this study can be utilized for tissue engineering applications such as for regeneration of human articular cartilage regeneration and soft bones.more » « less
- 
            Fibers are valuable to biomedical applications. Used as sutures or meshes, there is an increased dual need to provide functionality such as drug delivery. Porosity represents a high surface area to volume architecture. Coaxial fibers with porous and non-porous layers offer a new design framework for fiber design that can resolve dual needs of mechanical robustness with transport phenomena. Using preferential solubility of a polymer in supercritical CO2, we develop a new architecture using biocompatible polymers based on porous core-sheath fiber fabrication technique. Polycaprolactone was selected as the CO2 miscible phase and Poly(butyrate adipate terephthalate)(PBAT) as the immiscible phase. The mechanical performance of the fibers was investigated using quasi static and dynamic loading. SEM images indicate no physical detachment of the two polymer surface after CO2 exposure indicating a successful amalgamation of polymers at the boundary of core and sheath. PCL as a sheath and as a core showed an increase of 650% and 468% in tensile strength compared to pristine PCL and PBAT. Introduction of porosity on the surface of coaxial fiber fPCL(cPBAT) further enhanced the yield strength increases by 40%. Dynamic mechanical analysis was used to analyze the viscoelastic properties of the fibers. The storage and loss modulus for coaxial fibers shows superior modulus throughout the glassy, glass transition and rubbery region as compared to the pristine PCL and PBAT, showing enhancement in both the elastic and viscous response of the material. The results indicate a new approach that is free of volatile organic solvents to manipulate the architecture of the cross-section of the electrospun fiber and tailor mechanical properties to the required application.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    