skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: Modest flooding can trigger catastrophic road network collapse due to compound failure
Abstract Compound failures occur when urban flooding coincides with traffic congestion, and their impact on network connectivity is poorly understood. Firstly, either three-dimensional road networks or the traffic on the roads has been considered, but not both. Secondly, we lack network science frameworks to consider compound failures in infrastructure networks. Here we present a network-theory-based framework that bridges this gap by considering compound structural, functional, and topological failures. We analyze high-resolution traffic data using network percolation theory to study the response of the transportation network in Harris County, Texas, US to Hurricane Harvey in 2017. We find that 2.2% of flood-induced compound failure may lead to a reduction in the size of the largest cluster where network connectivity exists, the giant component, 17.7%. We conclude that indirect effects, such as changes in traffic patterns, must be accounted for when assessing the impacts of flooding on transportation network connectivity and functioning.  more » « less
Award ID(s):
1832662 2047488
PAR ID:
10363169
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Earth & Environment
Volume:
3
Issue:
1
ISSN:
2662-4435
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The significance of critical infrastructure systems in maintaining productivity is undeniable. However, such systems remain susceptible to external disturbances and cascading failures. Instead of operating independently, these physical systems, such as transportation and stormwater systems, form an interdependent system. This interdependence, particularly important during flooding, illustrates that the failure of a stormwater system can disrupt traffic networks. To explore the extent of such interdependency, this study investigates the transportation and stormwater networks in Norman, Oklahoma. Using network science theories and concepts of multilayered networks, this paper analyzes these systems, both individually and in combination. The study identifies closely located components in the road and stormwater networks using Moran's I spatial autocorrelation metric. Next, the connectivity of these networks is represented in a graph format to investigate the topological credentials (i.e., rank of relative importance) of the network components (i.e., water inlets, road intersections as nodes, and stormwater conduits, road segments as links). Moreover, such credentials further change by considering the weights of the network components (i.e., average daily traffic, water flow). The proximity-based connectivity considerations between these networks utilizing Moran's I significance score revealed a good indicator of spatial interdependency. When incorporating directionality, the multilayer network analysis highlights that highly central components tend to cluster spatially, unlike the undirected counterpart. The study also identifies vulnerable locations and network components in a combined network setting that differ from the networks in isolation. In doing so, the research reveals new insights governing the complex reliance of transportation systems on neighboring stormwater systems. 
    more » « less
  2. Abstract Failures within water distribution systems are usually not isolated and tend to propagate to corresponding transportation infrastructure, yet most criticality and resilience analyses of water distribution networks are conducted for the individual water infrastructure without accounting for interdependence. To address this research gap, this study investigates how the critical components identified within water distribution systems may be different when accounting for failure propagation to the transportation road network. In this study, failure propagation is assumed to be based on geospatial interdependence and unidirectional, starting from water distribution network components to transportation network components. A logical interaction network is constructed considering the interdependence between both infrastructures, and multiobjective optimization is used to solve for the critical water distribution components considering: quantity of failures, performance loss, and financial costs. This work presents a modular workflow for water distribution criticality analysis and proposes the Kolmogorov‐Smirnov distance statistic between solution sets as a measure of the significance of interdependency for decision making. Results from the case study suggest that as the magnitude of water infrastructure failure increases beyond a threshold, the interdependency between water distribution and transportation becomes more significant. The difference between identified critical components using only information from water distribution and using both water distribution and transportation is significantly different (with greater than 95% confidence) for the city of Tampa, when more than 40 components fail (are isolated). These results will assist utilities in asset management and strategy assessment, by helping prioritize component repair and better allocate resources for critical interdependent infrastructures. 
    more » « less
  3. Urban flooding disrupts traffic networks, affecting mobility and disrupting residents’ access. Flooding events are predicted to increase due to climate change; therefore, understanding traffic network’s flood-caused disruption is critical to improving emergency planning and city resilience. This study reveals the anatomy of perturbed traffic networks by leveraging high-resolution traffic network data from a major flood event and advanced high-order network analysis. We evaluate travel times between every pairwise junction in the city and assess higher-order network geometry changes in the network to determine flood impacts. The findings show network-wide persistent increased travel times could last for weeks after the flood water has receded, even after modest flood failure. A modest flooding of 1.3% road segments caused 8% temporal expansion of the entire traffic network. The results also show that distant trips would experience a greater percentage increase in travel time. Also, the extent of the increase in travel time does not decay with distance from inundated areas, suggesting that the spatial reach of flood impacts extends beyond flooded areas. The findings of this study provide an important novel understanding of floods’ impacts on the functioning of traffic networks in terms of travel time and traffic network geometry. 
    more » « less
  4. Network connectivity, i.e., the reachability of any network node from all other nodes, is often considered as the default network survivability metric against failures. However, in the case of a large-scale disaster disconnecting multiple network components, network connectivity may not be achievable. On the other hand, with the shifting service paradigm towards the cloud in today’s networks, most services can still be provided as long as at least a content replica is available in all disconnected network partitions. As a result, the concept of content connectivity has been introduced as a new network survivability metric under a large-scale disaster. Content connectivity is defined as the reachability of content from every node in a network under a specific failure scenario. In this work, we investigate how to ensure content connectivity in optical metro networks. We derive necessary and sufficient conditions and develop what we believe to be a novel mathematical formulation to map a virtual network over a physical network such that content connectivity for the virtual network is ensured against multiple link failures in the physical network. In our numerical results, obtained under various network settings, we compare the performance of mapping with content connectivity and network connectivity and show that mapping with content connectivity can guarantee higher survivability, lower network bandwidth utilization, and significant improvement of service availability. 
    more » « less
  5. Abstract Each year in the US, hundreds of billions of dollars are spent on transportation infrastructure and billions of hours are lost in traffic. We develop a quantitative general equilibrium spatial framework featuring endogenous transportation costs and traffic congestion and apply it to evaluate the welfare impact of transportation infrastructure improvements. Our approach yields analytical expressions for transportation costs between any two locations, the traffic along each link of the transportation network, and the equilibrium distribution of economic activity across the economy, each as a function of the underlying quality of infrastructure and the strength of traffic congestion. We characterize the properties of such an equilibrium and show how the framework can be combined with traffic data to evaluate the impact of improving any segment of the infrastructure network. Applying our framework to both the US highway network and the Seattle road network, we find highly variable returns to investment across different links in the respective transportation networks, highlighting the importance of well-targeted infrastructure investment. 
    more » « less