Compound failures occur when urban flooding coincides with traffic congestion, and their impact on network connectivity is poorly understood. Firstly, either three-dimensional road networks or the traffic on the roads has been considered, but not both. Secondly, we lack network science frameworks to consider compound failures in infrastructure networks. Here we present a network-theory-based framework that bridges this gap by considering compound structural, functional, and topological failures. We analyze high-resolution traffic data using network percolation theory to study the response of the transportation network in Harris County, Texas, US to Hurricane Harvey in 2017. We find that 2.2% of flood-induced compound failure may lead to a reduction in the size of the largest cluster where network connectivity exists, the giant component, 17.7%. We conclude that indirect effects, such as changes in traffic patterns, must be accounted for when assessing the impacts of flooding on transportation network connectivity and functioning.
- Award ID(s):
- 1832662
- Publication Date:
- NSF-PAR ID:
- 10363169
- Journal Name:
- Communications Earth & Environment
- Volume:
- 3
- Issue:
- 1
- ISSN:
- 2662-4435
- Publisher:
- Nature Publishing Group
- Sponsoring Org:
- National Science Foundation
More Like this
-
Deep learning algorithms are exceptionally valuable tools for collecting and analyzing the catastrophic readiness and countless actionable flood data. Convolutional neural networks (CNNs) are one form of deep learning algorithms widely used in computer vision which can be used to study flood images and assign learnable weights to various objects in the image. Here, we leveraged and discussed how connected vision systems can be used to embed cameras, image processing, CNNs, and data connectivity capabilities for flood label detection. We built a training database service of >9000 images (image annotation service) including the image geolocation information by streaming relevant images from social media platforms, Department of Transportation (DOT) 511 traffic cameras, the US Geological Survey (USGS) live river cameras, and images downloaded from search engines. We then developed a new python package called “FloodImageClassifier” to classify and detect objects within the collected flood images. “FloodImageClassifier” includes various CNNs architectures such as YOLOv3 (You look only once version 3), Fast R–CNN (Region-based CNN), Mask R–CNN, SSD MobileNet (Single Shot MultiBox Detector MobileNet), and EfficientDet (Efficient Object Detection) to perform both object detection and segmentation simultaneously. Canny Edge Detection and aspect ratio concepts are also included in the package for flood watermore »
-
Abstract Biological transportation networks must balance competing functional priorities. The self-organizing mechanisms used to generate such networks have inspired scalable algorithms to construct and maintain low-cost and efficient human-designed transport networks. The pheromone-based trail networks of ants have been especially valuable in this regard. Here, we use turtle ants as our focal system: In contrast to the ant species usually used as models for self-organized networks, these ants live in a spatially constrained arboreal environment where both nesting options and connecting pathways are limited. Thus, they must solve a distinct set of challenges which resemble those faced by human transport engineers constrained by existing infrastructure. Here, we ask how a turtle ant colony’s choice of which nests to include in a network may be influenced by their potential to create connections to other nests. In laboratory experiments with
Cephalotes varians andCephalotes texanus , we show that nest choice is influenced by spatial constraints, but in unexpected ways. Under one spatial configuration, colonies preferentially occupied more connected nest sites; however, under another spatial configuration, this preference disappeared. Comparing the results of these experiments to an agent-based model, we demonstrate that this apparently idiosyncratic relationship between nest connectivity and nest choice can emerge without nestmore » -
Abstract Smart resilience is the beneficial result of the collision course of the fields of data science and urban resilience to flooding. The objective of this study is to propose and demonstrate a smart flood resilience framework that leverages heterogeneous community-scale big data and infrastructure sensor data to enhance predictive risk monitoring and situational awareness. The smart flood resilience framework focuses on four core capabilities that could be augmented by the use of heterogeneous community-scale big data and analytics techniques: (1) predictive flood risk mapping; (2) automated rapid impact assessment; (3) predictive infrastructure failure prediction and monitoring; and (4) smart situational awareness capabilities. We demonstrate the components of these core capabilities of the smart flood resilience framework in the context of the 2017 Hurricane Harvey in Harris County, Texas. First, we present the use of flood sensors for the prediction of floodwater overflow in channel networks and inundation of co-located road networks. Second, we discuss the use of social media and machine learning techniques for assessing the impacts of floods on communities and sensing emotion signals to examine societal impacts. Third, we describe the use of high-resolution traffic data in network-theoretic models for nowcasting of flood propagation on road networksmore »
-
Abstract Considering the elasticity of the real networks, the components in the network have a redundant capacity against the load, such as power grids, traffic networks and so on. Moreover, the interaction strength between nodes is often different. This paper proposes a novel nonlinear model of cascade failure in weighted complex networks considering overloaded edges to describe the redundant capacity for edges and capture the interaction strength of nodes. We fill this gap by studying a nonlinear weighted model of cascade failure with overloaded edges over synthetic and real weighted networks. The cascading failure model is constructed for the first time according to the overload coefficient, capacity parameter, weight coefficient, and distribution coefficient. Then through theoretical analysis, the conditions for stopping failure cascades are obtained, and the analysis shows the superiority of the constructed model. Finally, the cascading invulnerability is simulated in several typical network models and the US power grid. The results show that the model is a feasible and reasonable change of weight parameters, capacity coefficient, distribution coefficient, and overload coefficient can significantly improve the destructiveness of complex networks against cascade failure. Our methodology provides an efficacious reference for the control and prevention of cascading failures in manymore »
-
Network connectivity, i.e., the reachability of any network node from all other nodes, is often considered as the default network survivability metric against failures. However, in the case of a large-scale disaster disconnecting multiple network components, network connectivity may not be achievable. On the other hand, with the shifting service paradigm towards the cloud in today’s networks, most services can still be provided as long as at least a content replica is available in all disconnected network partitions. As a result, the concept of content connectivity has been introduced as a new network survivability metric under a large-scale disaster. Content connectivity is defined as the reachability of content from every node in a network under a specific failure scenario. In this work, we investigate how to ensure content connectivity in optical metro networks. We derive necessary and sufficient conditions and develop what we believe to be a novel mathematical formulation to map a virtual network over a physical network such that content connectivity for the virtual network is ensured against multiple link failures in the physical network. In our numerical results, obtained under various network settings, we compare the performance of mapping with content connectivity and network connectivity and show thatmore »