skip to main content


Title: Survivable virtual network mapping with content connectivity against multiple link failures in optical metro networks

Network connectivity, i.e., the reachability of any network node from all other nodes, is often considered as the default network survivability metric against failures. However, in the case of a large-scale disaster disconnecting multiple network components, network connectivity may not be achievable. On the other hand, with the shifting service paradigm towards the cloud in today’s networks, most services can still be provided as long as at least a content replica is available in all disconnected network partitions. As a result, the concept of content connectivity has been introduced as a new network survivability metric under a large-scale disaster. Content connectivity is defined as the reachability of content from every node in a network under a specific failure scenario. In this work, we investigate how to ensure content connectivity in optical metro networks. We derive necessary and sufficient conditions and develop what we believe to be a novel mathematical formulation to map a virtual network over a physical network such that content connectivity for the virtual network is ensured against multiple link failures in the physical network. In our numerical results, obtained under various network settings, we compare the performance of mapping with content connectivity and network connectivity and show that mapping with content connectivity can guarantee higher survivability, lower network bandwidth utilization, and significant improvement of service availability.

 
more » « less
Award ID(s):
1818972
NSF-PAR ID:
10177996
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Journal of Optical Communications and Networking
Volume:
12
Issue:
11
ISSN:
1943-0620; JOCNBB
Page Range / eLocation ID:
Article No. 301
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Internet is composed of many interconnected, interoperating networks. With the recent advances in Future Internet design, multiple new network architectures, especially Information-Centric Networks (ICN) have emerged. Given the ubiquity of networks based on the Internet Protocol (IP), it is likely that we will have a number of different interconnecting network domains with different architectures, including ICNs. Their interoperability is important, but at the same time difficult to prove. A formal tool can be helpful for such analysis. ICNs have a number of unique characteristics, warranting formal analysis, establishing properties that go beyond, and are different from, what have been used in the state-of-the-art because ICN operates at the level of content names rather than node addresses. We need to focus on node-to-content reachability, rather than node-to-node reachability. In this paper, we present a formal approach to model and analyze information-centric interoperability (ICI). We use Alloy Analyzer’s model finding approach to verify properties expressed as invariants for information-centric services (both pull and push-based models) including content reachability and returnability. We extend our use of Alloy to model counting, to quantitatively analyze failure and mobility properties. We present a formally-verified ICI framework that allows for seamless interoperation among a multitude of network architectures. We also report on the impact of domain types, routing policies, and binding techniques on the probability of content reachability and returnability, under failures and mobility. 
    more » « less
  2. Abstract

    Soil moisture spatial patterns with length scales of 1‐100 km influence hydrological, ecological, and agricultural processes, but the footprint or support volume of existing monitoring systems, for example, satellite‐based radiometers and sparse in situ monitoring networks, is often either too large or too small to effectively observe these mesoscale patterns. This measurement scale gap hinders our understanding of soil water processes and complicates calibration and validation of hydrologic models and soil moisture satellites. One possible solution is to utilize geostatistical techniques that have proven effective for mapping static patterns in soil properties. The objective of this study was to determine how effectively dynamic, mesoscale soil moisture patterns can be mapped by applying regression kriging to the data from a sparse, large‐scale in situ network. The fully automated system developed here uses several data sets: daily soil moisture measurements from the Oklahoma Mesonet, sand content estimates from the Natural Resource Conservation Service Soil Survey Geographic Database, and an antecedent precipitation index computed from National Weather Service multisensor precipitation estimates. A multiple linear regression model is fitted daily to the observed data, and the residuals of that model are used in a semivariogram estimation and kriging routine to produce daily statewide maps of soil moisture at 5‐, 25‐, and 60‐cm depths at 800‐m resolution. During over 3 years of operation, this mapping system has revealed complex, dynamic, and depth‐specific mesoscale patterns, reflecting the shifting influences of both soil texture and precipitation, with a mean absolute error of ≤0.0576 cm3/cm3across all three depths.

     
    more » « less
  3. Summary Objective

    Identification of patient‐specific epileptogenic networks is critical to designing successful treatment strategies. Multiple noninvasive methods have been used to characterize epileptogenic networks. However, these methods lack the spatiotemporal resolution to allow precise localization of epileptiform activity. We used intracranial recordings, at much higher spatiotemporal resolution, across a cohort of patients with mesial temporal lobe epilepsy (MTLE) to delineate features common to their epileptogenic networks. We used interictal rather than seizure data because interictal spikes occur more frequently, providing us greater power for analyzing variances in the network.

    Methods

    Intracranial recordings from 10 medically refractoryMTLEpatients were analyzed. In each patient, hour‐long recordings were selected for having frequent interictal discharges and no ictal events. For all possible pairs of electrodes, conditional probability of the occurrence of interictal spikes within a 150‐millisecond bin was computed. These probabilities were used to construct a weighted graph between all electrodes, and the node degree was estimated. To assess the relationship of the highly connected regions in this network to the clinically identified seizure network, logistic regression was used to model the regions that were surgically resected using weighted node degree and number of spikes in each channel as factors. Lastly, the conditional spike probability was normalized and averaged across patients to visualize theMTLEnetwork at group level.

    Results

    We generated the first graph of connectivity across a cohort ofMTLEpatients using interictal activity. The most consistent connections were hippocampus to amygdala, anterior fusiform cortex to hippocampus, and parahippocampal gyrus projections to amygdala. Additionally, the weighted node degree and number of spikes modeled the brain regions identified as seizure networks by clinicians.

    Significance

    Apart from identifying interictal measures that can model patient‐specific epileptogenic networks, we also produce a group map of network connectivity from a cohort ofMTLEpatients.

     
    more » « less
  4. Cyber foraging techniques have been proposed in edge computing to support resource-intensive and latency-sensitive mobile applications. In a natural or man-made disaster scenario, all cyber foraging challenges are exacerbated by two problems: edge nodes are scarce and hence easily overloaded and failures are common due to the ad-hoc hostile conditions. In this paper, we study the use of efficient load profiling and migration strategies to mitigate such problems. In particular, we propose FORMICA, an architecture for cyber foraging orchestration, whose goal is to minimize the completion time of a set of jobs offloaded from mobile devices. Existing service offloading solutions are mainly concerned with outsourcing a job out of the mobile responsibility. Our architecture supports both mobile-based offloading and backend-driven onloading i.e., the offloading decision is taken by the edge infrastructure and not by the mobile node. FORMICA leverages Gelenbe networks to estimate the load profile of each node of the edge computing infrastructure to make proactive load profiling decisions. Our evaluation on a proof-of-concept implementation shows the benefits of our policy-based architecture in several (challenged disaster) scenarios but its applicability is broad to other IoT-based latency-sensitive applications. 
    more » « less
  5. Abstract

    Virtual water flows are used to map the indirect water consumption connections implied by the supply chain of a city, region, or country. This information can be used to manage supply chains to achieve environmental policy objectives and mitigate environmental risks to critical supply chains. A limitation of prior work is that these flows are typically analyzed using monolayer networks, which ignores crucial intersectoral or interlayer couplings. Here, we use a multilayer network to account for such couplings when analyzing blue virtual water flows in the United States. Our multilayer network consists of 115 different regions (nodes), covering the entire conterminous United States; 41 coupled economic sectors (layers); and ∼2 × 107possible links. To analyze the multilayer network, we focus on three fundamental network properties: topological connectivity, mesoscale structure, and node centrality. The network has a high connectivity, with each node being on average connected to roughly 2/3 of the network's nodes. Interlayer flows are a major driver of connectivity, representing ∼54% of all the network's connections. Five different groups of tightly connected nodes (communities) characterize the network. Each community represents a preferred spatial mode of long‐range virtual water interaction within the United States. We find that large (populous) cities have a stronger influence than small ones on network functioning because they attract and recirculate more virtual water through their supply chains. Our results also highlight differences between the multilayer and monolayer virtual water network, which overall show that the former provides a more realistic representation of virtual water flows.

     
    more » « less