skip to main content

Title: The nature of the Cygnus extreme B supergiant 2MASS J20395358+4222505

2MASS J20395358+4222505  is an obscured early B supergiant near the massive OB star association Cygnus OB2. Despite its bright infrared magnitude (Ks = 5.82) it has remained largely ignored because of its dim optical magnitude (B = 16.63, V = 13.68). In a previous paper, we classified it as a highly reddened, potentially extremely luminous, early B-type supergiant. We obtained its spectrum in the U, B and R spectral bands during commissioning observations with the instrument MEGARA at the Gran Telescopio CANARIAS. It displays a particularly strong Hα emission for its spectral type, B1 Ia. The star seems to be in an intermediate phase between supergiant and hypergiant, a group that it will probably join in the near (astronomical) future. We observe a radial velocity difference between individual observations and determine the stellar parameters, obtaining Teff = 24 000 K and log gc = 2.88 ± 0.15. The rotational velocity found is large for a B supergiant, $v$ sin i = 110 ± 25 $\rm km\, s^{-1}$. The abundance pattern is consistent with solar, with a mild C  underabundance (based on a single line). Assuming that J20395358+4222505  is at the distance of Cyg OB2, we derive the radius from infrared photometry, finding R = 41.2 ± 4.0 R⊙, log(L/L⊙) = 5.71 ± 0.04 and a spectroscopic mass of 46.5 ± 15.0 M⊙. The clumped mass-loss rate (clumping factor 10) is very high for the spectral type, $\dot{M}$ = 2.4 × 10−6 M⊙ a−1. The high rotational velocity and mass-loss rate place the star at the hot side of the bi-stability jump. Together with the nearly solar CNO abundance pattern, they may also point to evolution in a binary system, J20395358+4222505  being the initial secondary.

more » « less
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; « less
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Medium: X Size: p. 3113-3124
p. 3113-3124
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present the discovery of an exceptional dimming event in a cool supergiant star in the Local Volume spiral M51. The star, dubbed M51-DS1, was found as part of a Hubble Space Telescope (HST) search for failed supernovae (SNe). The supergiant, which is plausibly associated with a very young (≲6 Myr) stellar population, showed clear variability (amplitude ΔF814W≈ 0.7 mag) in numerous HST images obtained between 1995 and 2016, before suddenly dimming by >2 mag inF814Wsometime between late 2017 and mid-2019. In follow-up data from 2021, the star rebrightened, ruling out a failed supernova. Prior to its near-disappearance, the star was luminous and red (MF814W≲ − 7.6 mag,F606WF814W= 1.9–2.2 mag). Modeling of the pre-dimming spectral energy distribution of the star favors a highly reddened, very luminous (log[L/L]=5.4–5.7) star withTeff≈ 3700–4700 K, indicative of a cool yellow or post-red supergiant (RSG) with an initial mass of ≈26–40M. However, the local interstellar extinction and circumstellar extinction are uncertain, and could be lower: the near-IR colors are consistent with an RSG, which would be cooler (Teff≲ 3700 K) and slightly less luminous (log[L/L]=5.2–5.3), giving an inferred initial mass of ≈19–22M. In either case, the dimming may be explained by a rare episode of enhanced mass loss that temporarily obscures the star, potentially a more extreme counterpart to the 2019–2020 “Great Dimming” of Betelgeuse. Given the emerging evidence that massive evolved stars commonly exhibit variability that can mimic a disappearing star, our work highlights a substantial challenge in identifying true failed SNe.

    more » « less
  2. We present optical photometry and spectroscopy of the Type II supernova ASASSN-14jb, together with Very Large Telescope (VLT) Multi Unit Spectroscopic Explorer (MUSE) integral field observations of its host galaxy and a nebular-phase spectrum. This supernova, in the nearby galaxy ESO 467-G051 ( z  = 0.006), was discovered and followed-up by the all-sky automated survey for supernovae (ASAS-SN). We obtained well-sampled las cumbres network (LCOGTN) B V g r i and Swift w 2 m 1 w 1 u b v optical, near-UV/optical light curves, and several optical spectra in the early photospheric phases. The transient ASASSN-14jb exploded ∼2 kpc above the star-forming disk of ESO 467-G051, an edge-on disk galaxy. The large projected distance from the disk of the supernova position and the non-detection of any H II region in a 1.4 kpc radius in projection are in conflict with the standard environment of core-collapse supernova progenitors and suggests the possible scenario that the progenitor received a kick in a binary interaction. We present analysis of the optical light curves and spectra, from which we derived a distance of 25 ± 2 Mpc using state-of-the-art empirical methods for Type II SNe, physical properties of the SN explosion ( 56 Ni mass, explosion energy, and ejected mass), and properties of the progenitor; namely the progenitor radius, mass, and metallicity. Our analysis yields a 56 Ni mass of 0.0210  ±  0.0025  M ⊙ , an explosion energy of ≈0.25 × 10 51 ergs, and an ejected mass of ≈6  M ⊙ . We also constrained the progenitor radius to be R *  = 580  ±  28  R ⊙ which seems to be consistent with the sub-Solar metallicity of 0.3  ±  0.1  Z ⊙ derived from the supernova Fe II λ 5018 line. The nebular spectrum constrains strongly the progenitor mass to be in the range 10–12 M ⊙ . From the Spitzer data archive we detect ASASSN-14jb ≈330 days past explosion and we derived a total dust mass of 10 −4   M ⊙ from the 3.6 μ m and 4.5 μ m photometry. Using the F U V , N U V , B V g r i , K s , 3.6 μ m, and 4.5 μ m total magnitudes for the host galaxy, we fit stellar population synthesis models, which give an estimate of M *  ≈ 1 × 10 9   M ⊙ , an age of 3.2 Gyr, and a SFR ≈0.07  M ⊙ yr −1 . We also discuss the low oxygen abundance of the host galaxy derived from the MUSE data, having an average of 12 + log(O/H) = 8.27 +0.16 −0.20 using the O 3 N 2 diagnostic with strong line methods. We compared it with the supernova spectra, which is also consistent with a sub-Solar metallicity progenitor. Following recent observations of extraplanar H II regions in nearby edge-on galaxies, we derived the metallicity offset from the disk, being positive, but consistent with zero at 2 σ , suggesting enrichment from disk outflows. We finally discuss the possible scenarios for the unusual environment for ASASSN-14jb and conclude that either the in-situ star formation or runaway scenario would imply a low-mass progenitor, agreeing with our estimate from the supernova nebular spectrum. Regardless of the true origin of ASASSN-14jb, we show that the detailed study of the environment roughly agree with the stronger constraints from the observation of the transient. 
    more » « less
  3. Abstract

    We used the Immersion GRating Infrared Spectrometer (IGRINS) to determine fundamental parameters for 61 K- and M-type young stellar objects (YSOs) located in the Ophiuchus and Upper Scorpius star-forming regions. We employed synthetic spectra and a Markov chain Monte Carlo approach to fit specificK-band spectral regions and determine the photospheric temperature (T), surface gravity (logg), magnetic field strength (B), projected rotational velocity (vsini), andK-band veiling (rK). We determinedBfor ∼46% of our sample. Stellar parameters were compared to the results from Taurus-Auriga and the TW Hydrae association presented in Paper I of this series. We classified all the YSOs in the IGRINS survey with infrared spectral indices from Two Micron All Sky Survey and Wide-field Infrared Survey Explorer photometry between 2 and 24μm. We found that Class II YSOs typically have lowerloggandvsini, similarB, and higherK-band veiling than their Class III counterparts. Additionally, we determined the stellar parameters for a sample of K and M field stars also observed with IGRINS. We have identified intrinsic similarities and differences at different evolutionary stages with our homogeneous determination of stellar parameters in the IGRINS YSO survey. Consideringloggas a proxy for age, we found that the Ophiuchus and Taurus samples have a similar age. We also find that Upper Scorpius and TWA YSOs have similar ages, and are more evolved than Ophiuchus/Taurus YSOs.

    more » « less
  4. Abstract

    We present early observations and analysis of the double-peaked Type IIb supernova (SN IIb) SN 2021zby. TESS captured the prominent early shock-cooling peak of SN 2021zby within the first ∼10 days after explosion with a 30 minute cadence. We present optical and near-infrared spectral series of SN 2021zby, including three spectra during the shock-cooling phase. Using a multiband model fit, we find that the inferred properties of its progenitor are consistent with a red supergiant or yellow supergiant, with an envelope mass of ∼0.30–0.65Mand an envelope radius of ∼120–300R. These inferred progenitor properties are similar to those of other SNe IIb with a double-peaked feature, such as SNe 1993J, 2011dh, 2016gkg, and 2017jgh. This study further validates the importance of the high cadence and early coverage in resolving the shape of the shock-cooling light curve, while the multiband observations, particularly UV, are also necessary to fully constrain the progenitor properties.

    more » « less
  5. Abstract The Sloan Digital Sky Survey (SDSS) has recently initiated its fifth survey generation (SDSS-V), with a central focus on stellar spectroscopy. In particular, SDSS-V's Milky Way Mapper program will deliver multiepoch optical and near-infrared spectra for more than 5 × 10 6 stars across the entire sky, covering a large range in stellar mass, surface temperature, evolutionary stage, and age. About 10% of those spectra will be of hot stars of OBAF spectral types, for whose analysis no established survey pipelines exist. Here we present the spectral analysis algorithm, ZETA-PAYNE, developed specifically to obtain stellar labels from SDSS-V spectra of stars with these spectral types and drawing on machine-learning tools. We provide details of the algorithm training, its test on artificial spectra, and its validation on two control samples of real stars. Analysis with ZETA-PAYNE leads to only modest internal uncertainties in the near-IR with APOGEE (optical with BOSS): 3%–10% (1%–2%) for T eff , 5%–30% (5%–25%) for v sin i , 1.7–6.3 km s −1 (0.7–2.2 km s −1 ) for radial velocity, <0.1 dex (<0.05 dex) for log g , and 0.4–0.5 dex (0.1 dex) for [M/H] of the star, respectively. We find a good agreement between atmospheric parameters of OBAF-type stars when inferred from their high- and low-resolution optical spectra. For most stellar labels, the APOGEE spectra are (far) less informative than the BOSS spectra of these stars, while log g , v sin i , and [M/H] are in most cases too uncertain for meaningful astrophysical interpretation. This makes BOSS low-resolution optical spectra better for stellar labels of OBAF-type stars, unless the latter are subject to high levels of extinction. 
    more » « less