skip to main content


Title: Probing Hot Gas Components of the Circumgalactic Medium in Cosmological Simulations with the Thermal Sunyaev–Zel’dovich Effect
Abstract

The thermal Sunyaev–Zel’dovich (tSZ) effect is a powerful tool with the potential for constraining directly the properties of the hot gas that dominates dark matter halos because it measures pressure and thus thermal energy density. Studying this hot component of the circumgalactic medium (CGM) is important because it is strongly impacted by star formation and active galactic nucleus (AGN) activity in galaxies, participating in the feedback loop that regulates star and black hole mass growth in galaxies. We study the tSZ effect across a wide halo-mass range using three cosmological hydrodynamical simulations: Illustris-TNG, EAGLE, and FIRE-2. Specifically, we present the scaling relation between the tSZ signal and halo mass and the (mass-weighted) radial profiles of gas density, temperature, and pressure for all three simulations. The analysis includes comparisons to Planck tSZ observations and to the thermal pressure profile inferred from the Atacama Cosmology Telescope (ACT) measurements. We compare these tSZ data to simulations to interpret the measurements in terms of feedback and accretion processes in the CGM. We also identify as-yet unobserved potential signatures of these processes that may be visible in future measurements, which will have the capability of measuring tSZ signals to even lower masses. We also perform internal comparisons between runs with different physical assumptions. We conclude (1) there is strong evidence for the impact of feedback atR500, but that this impact decreases by 5R500, and (2) the thermodynamic profiles of the CGM are highly dependent on the implemented model, such as cosmic-ray or AGN feedback prescriptions.

 
more » « less
Award ID(s):
2108318 1911233
NSF-PAR ID:
10363287
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
926
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 179
Size(s):
["Article No. 179"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In the universe’s most massive galaxies, active galactic nucleus (AGN) feedback appears to limit star formation. The accumulation of cold gas near the central black hole fuels powerful AGN outbursts, keeping the ambient medium in a state marginally unstable to condensation and formation of cold gas clouds. However, the ability of that mechanism to self-regulate may depend on numerous environmental factors, including the depth of the potential well and the pressure of the surrounding circumgalactic medium (CGM). Here we present a suite of numerical simulations, with halo mass ranging from 2 × 1012Mto 8 × 1014M, exploring the dependence of AGN feedback on those environmental factors. We include the spatially extended mass and energy input from the massive galaxy’s old stellar population capable of sweeping gas out of the galaxy if the confining CGM pressure is sufficiently low. Our simulations show that this feedback mechanism is tightly self-regulating in a massive galaxy with a deep central potential and low CGM pressure, permitting only small amounts of multiphase gas to accumulate and allowing no star formation. In a similar-mass galaxy with shallower central potential and greater CGM pressure the feedback mechanism is more episodic, producing extended multiphase gas and allowing small rates of star formation (∼0.1Myr−1). At the low-mass end, the mechanism becomes implausibly explosive, perhaps because the CGM initially has no angular momentum, which would have reduced the amount of condensed gas capable of fueling feedback.

     
    more » « less
  2. null (Ed.)
    ABSTRACT We perform a consistent comparison of the mass and mass profiles of massive (M⋆ > 1011.4 M⊙) central galaxies at z ∼ 0.4 from deep Hyper Suprime-Cam (HSC) observations and from the Illustris, TNG100, and Ponos simulations. Weak lensing measurements from HSC enable measurements at fixed halo mass and provide constraints on the strength and impact of feedback at different halo mass scales. We compare the stellar mass function (SMF) and the Stellar-to-Halo Mass Relation (SHMR) at various radii and show that the radius at which the comparison is performed is important. In general, Illustris and TNG100 display steeper values of α where $M_{\star } \propto M_{\rm vir}^{\alpha }$. These differences are more pronounced for Illustris than for TNG100 and in the inner rather than outer regions of galaxies. Differences in the inner regions may suggest that TNG100 is too efficient at quenching in situ star formation at Mvir ≃ 1013 M⊙ but not efficient enough at Mvir ≃ 1014 M⊙. The outer stellar masses are in excellent agreement with our observations at Mvir ≃ 1013 M⊙, but both Illustris and TNG100 display excess outer mass as Mvir ≃ 1014 M⊙ (by ∼0.25 and ∼0.12 dex, respectively). We argue that reducing stellar growth at early times in $M_\star \sim 10^{9-10} \, \mathrm{M}_{\odot }$ galaxies would help to prevent excess ex-situ growth at this mass scale. The Ponos simulations do not implement AGN feedback and display an excess mass of ∼0.5 dex at r < 30 kpc compared to HSC which is indicative of overcooling and excess star formation in the central regions. The comparison of the inner profiles of Ponos and HSC suggests that the physical scale over which the central AGN limits star formation is r ≲ 20 kpc. Joint comparisons between weak lensing and galaxy stellar profiles are a direct test of whether simulations build and deposit galaxy mass in the correct dark matter haloes and thereby provide powerful constraints on the physics of feedback and galaxy growth. Our galaxy and weak lensing profiles are publicly available to facilitate comparisons with other simulations. 
    more » « less
  3. ABSTRACT We investigate the impact of cosmic rays (CRs) on the circumgalactic medium (CGM) in FIRE-2 simulations, for ultra-faint dwarf through Milky Way (MW)-mass haloes hosting star-forming (SF) galaxies. Our CR treatment includes injection by supernovae, anisotropic streaming and diffusion along magnetic field lines, and collisional and streaming losses, with constant parallel diffusivity $\kappa \sim 3\times 10^{29}\, \mathrm{cm^2\ s^{-1}}$ chosen to match γ-ray observations. With this, CRs become more important at larger halo masses and lower redshifts, and dominate the pressure in the CGM in MW-mass haloes at z ≲ 1–2. The gas in these ‘CR-dominated’ haloes differs significantly from runs without CRs: the gas is primarily cool (a few ${\sim}10^{4}\,$ K), and the cool phase is volume-filling and has a thermal pressure below that needed for virial or local thermal pressure balance. Ionization of the ‘low’ and ‘mid’ ions in this diffuse cool gas is dominated by photoionization, with O vi columns ${\gtrsim}10^{14.5}\, \mathrm{cm^{-2}}$ at distances ${\gtrsim}150\, \mathrm{kpc}$. CR and thermal gas pressure are locally anticorrelated, maintaining total pressure balance, and the CGM gas density profile is determined by the balance of CR pressure gradients and gravity. Neglecting CRs, the same haloes are primarily warm/hot ($T\gtrsim 10^{5}\,$K) with thermal pressure balancing gravity, collisional ionization dominates, O vi columns are lower and Ne viii higher, and the cool phase is confined to dense filaments in local thermal pressure equilibrium with the hot phase. 
    more » « less
  4. Abstract

    Current models of galaxy formation require strong feedback from active galactic nuclei (AGN) to explain the observed lack of star formation in massive galaxies sincez≈ 2, but direct evidence of this energy input is limited. We use the SIMBA cosmological galaxy formation simulations to assess the ability of thermal Sunyaev–Zel’dovich (tSZ) measurements to provide such evidence, by mapping the pressure structure of the circumgalactic medium around massivez≈ 0.2–1.5 galaxies. We undertake a stacking approach to calculate the total tSZ signal and its radial profile in simulations with varying assumptions of AGN feedback, and we assess its observability with current and future telescopes. By convolving our predictions with the 2.′1 beam of the Atacama Cosmology Telescope, we show that current observations atz≈ 1 are consistent with SIMBA’s fiducial treatment of AGN feedback and inconsistent with SIMBA models without feedback. Atz≈ 0.5, observational signals lie between SIMBA run with and without AGN feedback, suggesting AGN in SIMBA may inject too much energy at late times. By convolving our data with a 9.″5 beam corresponding to the TolTEC camera on the Large Millimeter Telescope Alfonso Serrano, we predict a unique profile for AGN feedback that can be distinguished with future higher-resolution measurements. Finally, we explore a novel approach to quantify the nonspherically symmetric features surrounding our galaxies by plotting radial profiles representing the component of the stack with m-fold symmetry.

     
    more » « less
  5. null (Ed.)
    ABSTRACT We examine the thermodynamic state and cooling of the low-z circumgalactic medium (CGM) in five FIRE-2 galaxy formation simulations of Milky Way-mass galaxies. We find that the CGM in these simulations is generally multiphase and dynamic, with a wide spectrum of largely non-linear density perturbations sourced by the accretion of gas from the intergalactic medium (IGM) and outflows from both the central and satellite galaxies. We investigate the origin of the multiphase structure of the CGM with a particle-tracking analysis and find that most of the low-entropy gas has cooled from the hot halo as a result of thermal instability triggered by these perturbations. The ratio of cooling to free-fall time-scales tcool/tff in the hot component of the CGM spans a wide range of ∼1−100 at a given radius but exhibits approximately constant median values of ∼5−20 at all radii 0.1Rvir < r < Rvir. These are similar to the ≈10−20 value typically adopted as the thermal instability threshold in ‘precipitation’ models of the ICM. Consequently, a one-dimensional model based on the assumption of a constant tcool/tff and hydrostatic equilibrium approximately reproduces the number density and entropy profiles of each simulation but only if it assumes the metallicity profile and temperature boundary condition taken directly from the simulation. We explicitly show that the tcool/tff value of a gas parcel in the hot component of the CGM does not predict its probability of subsequently accreting on to the central galaxy. This suggests that the value of tcool/tff is a poor predictor of thermal stability in gaseous haloes in which large-amplitude density perturbations are prevalent. 
    more » « less