Abstract The circumgalactic medium (CGM) around massive galaxies plays a crucial role in regulating star formation and feedback. Using the Cosmology and Astrophysics with MachinE Learning Simulations (CAMELS) suite, we develop emulators for the X-ray surface brightness profile and the X-ray luminosity–stellar mass scaling relation, to investigate how stellar and active galactic nucleus (AGN) feedback shape the X-ray properties of the hot CGM. Our analysis shows that at CGM scales (1012≲Mhalo/M⊙≲ 1013, 10 ≲rkpc−1≲ 400), stellar feedback more significantly impacts the X-ray properties than AGN feedback within the parameters studied. Comparing the emulators to recent eROSITA All Sky Survey (eRASS) observations, it is found that stronger feedback than is currently implemented in the IllustrisTNG, SIMBA, and Astrid simulations is required to match the observed CGM properties. However, adopting these enhanced feedback parameters causes deviations in the stellar mass–halo mass relations from observational constraints below the group-mass scale. This tension suggests possible unaccounted-for systematics in X-ray CGM observations or inadequacies in the feedback models of cosmological simulations. 
                        more » 
                        « less   
                    
                            
                            Probing Hot Gas Components of the Circumgalactic Medium in Cosmological Simulations with the Thermal Sunyaev–Zel’dovich Effect
                        
                    
    
            Abstract The thermal Sunyaev–Zel’dovich (tSZ) effect is a powerful tool with the potential for constraining directly the properties of the hot gas that dominates dark matter halos because it measures pressure and thus thermal energy density. Studying this hot component of the circumgalactic medium (CGM) is important because it is strongly impacted by star formation and active galactic nucleus (AGN) activity in galaxies, participating in the feedback loop that regulates star and black hole mass growth in galaxies. We study the tSZ effect across a wide halo-mass range using three cosmological hydrodynamical simulations: Illustris-TNG, EAGLE, and FIRE-2. Specifically, we present the scaling relation between the tSZ signal and halo mass and the (mass-weighted) radial profiles of gas density, temperature, and pressure for all three simulations. The analysis includes comparisons to Planck tSZ observations and to the thermal pressure profile inferred from the Atacama Cosmology Telescope (ACT) measurements. We compare these tSZ data to simulations to interpret the measurements in terms of feedback and accretion processes in the CGM. We also identify as-yet unobserved potential signatures of these processes that may be visible in future measurements, which will have the capability of measuring tSZ signals to even lower masses. We also perform internal comparisons between runs with different physical assumptions. We conclude (1) there is strong evidence for the impact of feedback atR500, but that this impact decreases by 5R500, and (2) the thermodynamic profiles of the CGM are highly dependent on the implemented model, such as cosmic-ray or AGN feedback prescriptions. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10363287
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 926
- Issue:
- 2
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 179
- Size(s):
- Article No. 179
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract We make an in-depth analysis of different active galactic nuclei (AGN) jet models’ signatures, inducing quiescence in galaxies with a halo mass of 1012M⊙. Three jet models, including cosmic-ray-dominant, hot thermal, and precessing kinetic jets, are studied at two energy flux levels each, compared to a jet-free, stellar feedback-only simulation. Each of our simulations is idealized isolated galaxy simulations with AGN jet powers that are constant in time and generated using GIZMO and with FIRE stellar feedback. We examine the distribution of Mgii, Ovi, and Oviiiions, alongside gas temperature and density profiles. Low-energy ions, like Mgii, concentrate in the interstellar medium (ISM), while higher energy ions, e.g., Oviii, prevail at the AGN jet cocoon’s edge. High-energy flux jets display an isotropic ion distribution with lower overall density. High-energy thermal or cosmic-ray jets pressurize at smaller radii, significantly suppressing core density. The cosmic-ray jet provides extra pressure support, extending cool and warm gas distribution. A break in the ion-to-mass ratio slope in Oviand Oviiiis demonstrated in the ISM-to-circumgalactic medium (CGM) transition (between 10 and 30 kpc), growing smoothly toward the CGM at greater distances.more » « less
- 
            The circumgalactic medium (CGM) around massive galaxies plays a crucial role in regulating star formation and feedback. Using the Cosmology and Astrophysics with MachinE Learning Simulations (CAMELS) suite, we develop emulators for the X-ray surface brightness profile and the X-ray luminosity–stellar mass scaling relation, to investigate how stellar and active galactic nucleus (AGN) feedback shape the X-ray properties of the hot CGM. Our analysis shows that at CGM scales (1012 Mhalo/Me  1013, 10 r kpc−1  400), stellar feedback more significantly impacts the X-ray properties than AGN feedback within the parameters studied. Comparing the emulators to recent eROSITA All Sky Survey (eRASS) observations, it is found that stronger feedback than is currently implemented in the IllustrisTNG, SIMBA, and Astrid simulations is required to match the observed CGM properties. However, adopting these enhanced feedback parameters causes deviations in the stellar mass–halo mass relations from observational constraints below the group-mass scale. This tension suggests possible unaccounted for systematics in X-ray CGM observations or inadequacies in the feedback models of cosmological simulations.more » « less
- 
            Abstract We present radial profiles of luminosity-weighted age (ageL) and ΔΣSFRfor various populations of high- and low-mass central and satellite galaxies in the TNG100 cosmological simulation. Using these profiles, we investigate the impact of intrinsic and environmental factors on the radial distribution of star formation. For both central galaxies and satellites, we investigate the effects of black hole mass, cumulative active galactic nucleus (AGN) feedback energy, morphology, halo mass, and local galaxy overdensity on the profiles. In addition, we investigate the dependence of radial profiles of the satellite galaxies as a function of the redshifts at which they joined their hosts, as well as the net change in star-forming gas mass since the satellites joined their host. We find that high-mass (M*> 1010.5M⊙) central and satellite galaxies show evidence of inside-out quenching driven by AGN feedback. Effects from environmental processes only become apparent in averaged profiles at extreme halo masses and local overdensities. We find that the dominant quenching process for low-mass galaxies (M*< 1010M⊙) is environmental, generally occurring at low halo mass and high local galaxy overdensity for low-mass central galaxies and at high host halo masses for low-mass satellite galaxies. Overall, we find that environmental processes generally drive quenching from the outside-in.more » « less
- 
            Abstract The circumgalactic medium (CGM) of star-forming dwarf galaxies plays a key role in regulating the galactic baryonic cycle. We investigate how susceptible the CGM of dwarf satellite galaxies is to ram pressure stripping in Milky Way–like environments. In a suite of hydrodynamical wind tunnel simulations, we model an intermediate-mass dwarf satellite galaxy (M*= 107.2M⊙) with a multiphase interstellar medium (ISM;MISM= 107.9M⊙) and CGM (MCGM,vir= 108.5M⊙) along two first-infall orbits to more than 500 Myr past pericenter of a Milky Way–like host. The spatial resolution is ∼79 pc in the star-forming ISM and 316−632 pc in the CGM. Our simulations show that the dwarf satellite CGM removal is fast and effective: more than 95% of the CGM mass is ram pressure stripped within a few hundred megayears, even under a weak ram pressure orbit where the ISM stripping is negligible. The conditions for CGM survival are consistent with the analytical halo gas stripping predictions in McCarthy et al. We also find that including the satellite CGM does not effectively shield its galaxy, and therefore the ISM stripping rate is unaffected. Our results imply that a dwarf galaxy CGM is unlikely to be detected in satellite galaxies; and that the star formation of gaseous dwarf satellites is likely devoid of replenishment from a CGM.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
