skip to main content

This content will become publicly available on March 3, 2023

Title: Electron-only reconnection and associated electron heating and acceleration in PHASMA

Using incoherent Thomson scattering, electron heating and acceleration at the electron velocity distribution function (EVDF) level are investigated during electron-only reconnection in the PHAse Space MApping (PHASMA) facility. Reconnection arises during the merger of two kink-free flux ropes. Both push and pull type reconnection occur in a single discharge. Electron heating is localized around the separatrix, and the electron temperature increases continuously along the separatrix with distance from the X-line. The local measured gain in enthalpy flux is up to 70% of the incoming Poynting flux. Notably, non-Maxwellian EVDFs comprised of a warm bulk population and a cold beam are directly measured during the electron-only reconnection. The electron beam velocity is comparable to, and scales with, electron Alfvén speed, revealing the signature of electron acceleration caused by electron-only reconnection. The observation of oppositely directed electron beams on either side of the X-point provides “smoking-gun” evidence of the occurrence of electron-only reconnection in PHASMA. 2D particle-in-cell simulations agree well with the laboratory measurements. The measured conversion of Poynting flux into electron enthalpy is consistent with recent observations of electron-only reconnection in the magnetosheath [Phan et al., Nature 557, 202 (2018)] at similar dimensionless parameters as in the experiments. The laboratory measurements more » go beyond the magnetosheath observations by directly resolving the electron temperature gain.

« less
Authors:
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Award ID(s):
1902111 1602769 1804428
Publication Date:
NSF-PAR ID:
10363359
Journal Name:
Physics of Plasmas
Volume:
29
Issue:
3
Page Range or eLocation-ID:
Article No. 032101
ISSN:
1070-664X
Publisher:
American Institute of Physics
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Magnetic reconnection plays an important role in converting energy while modifying field topology. This process takes place under varied plasma conditions during which the transport of magnetic flux is intrinsic. Identifying active magnetic reconnection sites with in situ observations is challenging. A new technique, Magnetic Flux Transport (MFT) analysis, has been developed recently and proven in numerical simulation for identifying active reconnection efficiently and accurately. In this study, we examine the MFT process in 37 previously reported electron diffusion region (EDR)/reconnection-line crossing events at the day-side magnetopause and in the magnetotail and turbulent magnetosheath using Magnetospheric Multiscale measurements. The coexisting inward and outward MFT flows at an X-point provides a signature that magnetic field lines become disconnected and reconnected. The application of MFT analysis to in-situ observations demonstrates that MFT can successfully identify active reconnection sites under complex varied conditions, including asymmetric and turbulent upstream conditions. It also provides a higher rate of identification than plasma outflow jets alone. MFT can be applied to in situ measurements from both single- and multi-spacecraft missions and laboratory experiments.

  2. Observations in Earth’s turbulent magnetosheath downstream of a quasiparallel bow shock reveal a prevalence of electron-scale current sheets favorable for electron-only reconnection where ions are not coupled to the reconnecting magnetic fields. In small-scale turbulence, magnetic structures associated with intense current sheets are limited in all dimensions. And since the coupling of ions are constrained by a minimum length scale, the dynamics of electron reconnection is likely to be 3D. Here, both 2D and 3D kinetic particle-in-cell simulations are used to investigate electron-only reconnection, focusing on the reconnection rate and associated electron flows. A new form of 3D electron-only reconnection spontaneously develops where the magnetic X-line is localized in the out-of-plane (z) direction. The consequence is an enhancement of the reconnection rate compared with two dimensions, which results from differential mass flux out of the diffusion region along z, enabling a faster inflow velocity and thus a larger reconnection rate. This outflow along z is due to the magnetic tension force in z just as the conventional exhaust tension force, allowing particles to leave the diffusion region efficiently along z unlike the 2D configuration.
  3. Aims. We analyse particle, radio, and X-ray observations during the first relativistic proton event of solar cycle 25 detected on Earth. The aim is to gain insight into the relationship between relativistic solar particles detected in space and the processes of acceleration and propagation in solar eruptive events. Methods. To this end, we used ground-based neutron monitor measurements of relativistic nucleons and space-borne measurements of electrons with similar speed to determine the arrival times of the first particles at 1 AU and to infer their solar release times. We compared the release times with the time histories of non-thermal electrons in the solar atmosphere and their escape to interplanetary space, as traced by radio spectra and X-ray light curves and images. Results. Non-thermal electrons in the corona are found to be accelerated in different regions. Some are confined in closed magnetic structures expanding during the course of the event. Three episodes of electron escape to the interplanetary space are revealed by groups of decametric-to-kilometric type III bursts. The first group appears on the low-frequency side of a type II burst produced by a coronal shock wave. The two latter groups are accompanied at higher frequencies by bursts with rapid driftsmore »to both lower and higher frequencies (forward- or reverse-drifting bursts). They are produced by electron beams that propagate both sunward and anti-sunward. The first relativistic electrons and nucleons observed near Earth are released with the third group of type III bursts, more than ten minutes after the first signatures of non-thermal electrons and of the formation of the shock wave in the corona. Although the eruptive active region is near the central meridian, several tens of degrees east of the footpoint of the nominal Parker spiral to the Earth, the kilometric spectrum of the type III bursts and the in situ detection of Langmuir waves demonstrate a direct magnetic connection between the L1 Lagrange point and the field lines onto which the electron beams are released at the Sun. Conclusions. We interpret the forward- and reverse-drifting radio bursts as evidence of reconnection between the closed expanding magnetic structures of an erupting flux rope and ambient open magnetic field lines. We discuss the origin of relativistic particles near the Earth across two scenarios: (1) acceleration at the CME-driven shock as it intercepts interplanetary magnetic field lines rooted in the western solar hemisphere and (2) an alternative where the relativistic particles are initially confined in the erupting magnetic fields and get access to the open field lines to the Earth through these reconnection events.« less
  4. Electrons in earth's magnetotail are energized significantly both in the form of heating and in the form of acceleration to non-thermal energies. While magnetic reconnection is considered to play an important role in this energization, it still remains unclear how electrons are energized and how energy is partitioned between thermal and non-thermal components. Here, we show, based on in situ observations by NASA's magnetospheric multiscale mission combined with multi-component spectral fitting methods, that the average electron energy [Formula: see text] (or equivalently temperature) is substantially higher when the locally averaged electric field magnitude [Formula: see text] is also higher. While this result is consistent with the classification of “plasma-sheet” and “tail-lobe” reconnection during which reconnection is considered to occur on closed and open magnetic field lines, respectively, it further suggests that a stochastic Fermi acceleration in 3D, reconnection-driven turbulence is essential for the production and confinement of energetic electrons in the reconnection region. The puzzle is that the non-thermal power-law component can be quite small even when the electric field is large and the bulk population is significantly heated. The fraction of non-thermal electron energies varies from sample to sample between ∼20% and ∼60%, regardless of the electric field magnitude.more »Interestingly, these values of non-thermal fractions are similar to those obtained for the above-the-looptop hard x-ray coronal sources for solar flares.« less
  5. Over three decades of in-situ observations illustrate that the Kelvin–Helmholtz (KH) instability driven by the sheared flow between the magnetosheath and magnetospheric plasma often occurs on the magnetopause of Earth and other planets under various interplanetary magnetic field (IMF) conditions. It has been well demonstrated that the KH instability plays an important role for energy, momentum, and mass transport during the solar-wind-magnetosphere coupling process. Particularly, the KH instability is an important mechanism to trigger secondary small scale (i.e., often kinetic-scale) physical processes, such as magnetic reconnection, kinetic Alfvén waves, ion-acoustic waves, and turbulence, providing the bridge for the coupling of cross scale physical processes. From the simulation perspective, to fully investigate the role of the KH instability on the cross-scale process requires a numerical modeling that can describe the physical scales from a few Earth radii to a few ion (even electron) inertial lengths in three dimensions, which is often computationally expensive. Thus, different simulation methods are required to explore physical processes on different length scales, and cross validate the physical processes which occur on the overlapping length scales. Test particle simulation provides such a bridge to connect the MHD scale to the kinetic scale. This study applies different testmore »particle approaches and cross validates the different results against one another to investigate the behavior of different ion species (i.e., H+ and O+), which include particle distributions, mixing and heating. It shows that the ion transport rate is about 10 25  particles/s, and mixing diffusion coefficient is about 10 10  m 2  s −1 regardless of the ion species. Magnetic field lines change their topology via the magnetic reconnection process driven by the three-dimensional KH instability, connecting two flux tubes with different temperature, which eventually causes anisotropic temperature in the newly reconnected flux.« less