skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reaching the Excitonic Limit in 2D Janus Monolayers by In Situ Deterministic Growth
Abstract Named after the two‐faced Roman god of transitions, transition metal dichalcogenide (TMD) Janus monolayers have two different chalcogen surfaces, inherently breaking the out‐of‐plane mirror symmetry. The broken mirror symmetry and the resulting potential gradient lead to the emergence of quantum properties such as the Rashba effect and the formation of dipolar excitons. Experimental access to these quantum properties, however, hinges on the ability to produce high‐quality 2D Janus monolayers. Here, these results introduce a holistic 2D Janus synthesis technique that allows real‐time monitoring of the growth process. This prototype chamber integrates in situ spectroscopy, offering fundamental insights into the structural evolution and growth kinetics, that allow the evaluation and optimization of the quality of Janus monolayers. The versatility of this method is demonstrated by synthesizing and monitoring the conversion of SWSe, SNbSe, and SMoSe Janus monolayers. Deterministic conversion and real‐time data collection further aid in conversion of exfoliated TMDs to Janus monolayers and unparalleled exciton linewidth values are reached, compared to the current best standard. The results offer an insight into the process kinetics and aid in the development of new Janus monolayers with high optical quality, which is much needed to access their exotic properties.  more » « less
Award ID(s):
1933214
PAR ID:
10363365
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
34
Issue:
6
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract 2D Janus Transition Metal Dichalcogenides (TMDs) have attracted much interest due to their exciting quantum properties arising from their unique two‐faced structure, broken‐mirror symmetry, and consequent colossal polarization field within the monolayer. While efforts are made to achieve high‐quality Janus monolayers, the existing methods rely on highly energetic processes that introduce unwanted grain‐boundary and point defects with still unexplored effects on the material's structural and excitonic properties Through high‐resolution scanning transmission electron microscopy (HRSTEM), density functional theory (DFT), and optical spectroscopy measurements; this work introduces the most encountered and energetically stable point defects. It establishes their impact on the material's optical properties. HRSTEM studies show that the most energetically stable point defects are single (VS andVSe) and double chalcogen vacancy (VS−VSe), interstitial defects (Mi), and metal impurities (MW) and establish their structural characteristics. DFT further establishes their formation energies and related localized bands within the forbidden band. Cryogenic excitonic studies on h‐BN‐encapsulated Janus monolayers offer a clear correlation between these structural defects and observed emission features, which closely align with the results of the theory. The overall results introduce the defect genome of Janus TMDs as an essential guideline for assessing their structural quality and device properties. 
    more » « less
  2. Abstract Newly discovered 2D Janus transition metal dichalcogenides layers have gained much attention from a theory perspective owing to their unique atomic structure and exotic materials properties, but little to no experimental data are available on these materials. Here, experimental and theoretical studies establish the vibrational and optical behavior of 2D Janus S–W–Se and S–Mo–Se monolayers under high pressures for the first time. Chemical vapor deposition (CVD)‐grown classical transition metal dichalcogenides (TMD) monolayers are first transferred onto van der Waals (vdW) mica substrates and converted to 2D Janus sheets by surface plasma technique, and then integrated into a 500 µm size diamond anvil cell for high‐pressure studies. The results show that 2D Janus layers do not undergo phase transition up to 15 GPa, and in this pressure regime, their vibrational modes exhibit a nonmonotonic response to the applied pressures (dω/dP). Interestingly, these 2D Janus monolayers exhibit unique blueshift in photoluminescence (PL) upon compression, which is in contrast to many other traditional semiconductor materials. Overall theoretical simulations offer in‐depth insights and reveal that the overall optical response is a result of competition between theab‐plane (blueshift) andc‐axis (redshift) compression. The overall findings shed the very first light on how 2D Janus monolayers respond under extreme pressures and expand the fundamental understanding of these materials. 
    more » « less
  3. Abstract 2D Janus transition metal dichalcogenides (TMDs) have attracted attention due to their emergent properties arising from broken mirror symmetry and self‐driven polarization fields. While it has been proposed that their vdW superlattices hold the key to achieving superior properties in piezoelectricity and photovoltaic, available synthesis has ultimately limited their realization. Here, the first packed vdW nanoscrolls made from Janus TMDs through a simple one‐drop solution technique are reported. The results, including ab initio simulations, show that the Bohr radius difference between the top sulfur and the bottom selenium atoms within Janus (M = Mo, W) results in a permanent compressive surface strain that acts as a nanoscroll formation catalyst after small liquid interaction. Unlike classical 2D layers, the surface strain in Janus TMDs can be engineered from compressive to tensile by placing larger Bohr radius atoms on top (to yield inverted C scrolls. Detailed microscopy studies offer the first insights into their morphology and readily formed Moiré lattices. In contrast, spectroscopy and FETs studies establish their excitonic and device properties and highlight significant differences compared to 2D flat Janus TMDs. These results introduce the first polar Janus TMD nanoscrolls and introduce inherent strain‐driven scrolling dynamics as a catalyst to create superlattices. 
    more » « less
  4. Two-dimensional materials from layered van der Waals (vdW) crystals hold great promise for electronic, optoelectronic, and quantum devices, but technological implementation will be hampered by the lack of high-throughput techniques for exfoliating single-crystal monolayers with sufficient size and high quality. Here, we report a facile method to disassemble vdW single crystals layer by layer into monolayers with near-unity yield and with dimensions limited only by bulk crystal sizes. The macroscopic monolayers are comparable in quality to microscopic monolayers from conventional Scotch tape exfoliation. The monolayers can be assembled into macroscopic artificial structures, including transition metal dichalcogenide multilayers with broken inversion symmetry and substantially enhanced nonlinear optical response. This approach takes us one step closer to mass production of macroscopic monolayers and bulk-like artificial materials with controllable properties. 
    more » « less
  5. Abstract Janus transition metal dichalcogenides are an emerging class of atomically thin materials with engineered broken mirror symmetry that gives rise to long‐lived dipolar excitons, Rashba splitting, and topologically protected solitons. They hold great promise as a versatile nonlinear optical platform due to their broadband harmonic generation tunability, ease of integration on photonic structures, and nonlinearities beyond the basal crystal plane. Here, second and third harmonic generation in MoSSe and WSSe Janus monolayers is studied. Polarization‐resolved spectroscopy is used to map the full second‐order susceptibility tensor of MoSSe, including its out‐of‐plane components. In addition, the effective third‐order susceptibility and the second‐order nonlinear dispersion close to exciton resonances for both MoSSe and WSSe are measured at room and cryogenic temperatures. This work sets a bedrock for understanding the nonlinear optical properties of Janus transition metal dichalcogenides and probing their use in the next‐generation on‐chip multifaceted photonic devices. 
    more » « less