skip to main content


Title: Reaching the Excitonic Limit in 2D Janus Monolayers by In Situ Deterministic Growth
Abstract

Named after the two‐faced Roman god of transitions, transition metal dichalcogenide (TMD) Janus monolayers have two different chalcogen surfaces, inherently breaking the out‐of‐plane mirror symmetry. The broken mirror symmetry and the resulting potential gradient lead to the emergence of quantum properties such as the Rashba effect and the formation of dipolar excitons. Experimental access to these quantum properties, however, hinges on the ability to produce high‐quality 2D Janus monolayers. Here, these results introduce a holistic 2D Janus synthesis technique that allows real‐time monitoring of the growth process. This prototype chamber integrates in situ spectroscopy, offering fundamental insights into the structural evolution and growth kinetics, that allow the evaluation and optimization of the quality of Janus monolayers. The versatility of this method is demonstrated by synthesizing and monitoring the conversion of SWSe, SNbSe, and SMoSe Janus monolayers. Deterministic conversion and real‐time data collection further aid in conversion of exfoliated TMDs to Janus monolayers and unparalleled exciton linewidth values are reached, compared to the current best standard. The results offer an insight into the process kinetics and aid in the development of new Janus monolayers with high optical quality, which is much needed to access their exotic properties.

 
more » « less
Award ID(s):
2052527 2111812 1904716 1825594 1933214
NSF-PAR ID:
10363366
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
34
Issue:
6
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Janus crystals represent an exciting class of 2D materials with different atomic species on their upper and lower facets. Theories have predicted that this symmetry breaking induces an electric field and leads to a wealth of novel properties, such as large Rashba spin–orbit coupling and formation of strongly correlated electronic states. Monolayer MoSSe Janus crystals have been synthesized by two methods, via controlled sulfurization of monolayer MoSe2and via plasma stripping followed thermal annealing of MoS2. However, the high processing temperatures prevent growth of other Janus materials and their heterostructures. Here, a room‐temperature technique for the synthesis of a variety of Janus monolayers with high structural and optical quality is reported. This process involves low‐energy reactive radical precursors, which enables selective removal and replacement of the uppermost chalcogen layer, thus transforming classical transition metal dichalcogenides into a Janus structure. The resulting materials show clear mixed character for their excitonic transitions, and more importantly, the presented room‐temperature method enables the demonstration of first vertical and lateral heterojunctions of 2D Janus TMDs. The results present significant and pioneering advances in the synthesis of new classes of 2D materials, and pave the way for the creation of heterostructures from 2D Janus layers.

     
    more » « less
  2. Abstract

    Newly discovered 2D Janus transition metal dichalcogenides layers have gained much attention from a theory perspective owing to their unique atomic structure and exotic materials properties, but little to no experimental data are available on these materials. Here, experimental and theoretical studies establish the vibrational and optical behavior of 2D Janus S–W–Se and S–Mo–Se monolayers under high pressures for the first time. Chemical vapor deposition (CVD)‐grown classical transition metal dichalcogenides (TMD) monolayers are first transferred onto van der Waals (vdW) mica substrates and converted to 2D Janus sheets by surface plasma technique, and then integrated into a 500 µm size diamond anvil cell for high‐pressure studies. The results show that 2D Janus layers do not undergo phase transition up to 15 GPa, and in this pressure regime, their vibrational modes exhibit a nonmonotonic response to the applied pressures (/dP). Interestingly, these 2D Janus monolayers exhibit unique blueshift in photoluminescence (PL) upon compression, which is in contrast to many other traditional semiconductor materials. Overall theoretical simulations offer in‐depth insights and reveal that the overall optical response is a result of competition between theab‐plane (blueshift) andc‐axis (redshift) compression. The overall findings shed the very first light on how 2D Janus monolayers respond under extreme pressures and expand the fundamental understanding of these materials.

     
    more » « less
  3. Abstract

    2D Janus transition metal dichalcogenides (TMDs) have attracted attention due to their emergent properties arising from broken mirror symmetry and self‐driven polarization fields. While it has been proposed that their vdW superlattices hold the key to achieving superior properties in piezoelectricity and photovoltaic, available synthesis has ultimately limited their realization. Here, the first packed vdW nanoscrolls made from Janus TMDs through a simple one‐drop solution technique are reported. The results, including ab initio simulations, show that the Bohr radius difference between the top sulfur and the bottom selenium atoms within Janus (M = Mo, W) results in a permanent compressive surface strain that acts as a nanoscroll formation catalyst after small liquid interaction. Unlike classical 2D layers, the surface strain in Janus TMDs can be engineered from compressive to tensile by placing larger Bohr radius atoms on top (to yield inverted C scrolls. Detailed microscopy studies offer the first insights into their morphology and readily formed Moiré lattices. In contrast, spectroscopy and FETs studies establish their excitonic and device properties and highlight significant differences compared to 2D flat Janus TMDs. These results introduce the first polar Janus TMD nanoscrolls and introduce inherent strain‐driven scrolling dynamics as a catalyst to create superlattices.

     
    more » « less
  4. Abstract

    Janus transition metal dichalcogenides are an emerging class of atomically thin materials with engineered broken mirror symmetry that gives rise to long‐lived dipolar excitons, Rashba splitting, and topologically protected solitons. They hold great promise as a versatile nonlinear optical platform due to their broadband harmonic generation tunability, ease of integration on photonic structures, and nonlinearities beyond the basal crystal plane. Here, second and third harmonic generation in MoSSe and WSSe Janus monolayers is studied. Polarization‐resolved spectroscopy is used to map the full second‐order susceptibility tensor of MoSSe, including its out‐of‐plane components. In addition, the effective third‐order susceptibility and the second‐order nonlinear dispersion close to exciton resonances for both MoSSe and WSSe are measured at room and cryogenic temperatures. This work sets a bedrock for understanding the nonlinear optical properties of Janus transition metal dichalcogenides and probing their use in the next‐generation on‐chip multifaceted photonic devices.

     
    more » « less
  5. Metalorganic chemical vapor deposition (MOCVD) is a promising technique for wafer-scale synthesis of MoS2 monolayers for 2D field-effect transistors (2D-FETs) and related devices. Epitaxial growth of MoS2 on sapphire provides films that are crystallographically well-oriented but typically contain low-angle grain boundaries (e.g., mirror twins), voids, and other defects depending on growth conditions and substrate characteristics. In this study, we investigate microstructure, optical properties, and field-effect characteristics of wafer-scale MoS2 monolayers grown by MOCVD on c-plane sapphire over a narrow window of growth temperatures (900–1000 °C). The density of low-angle grain boundaries in the MoS2 monolayer was found to decrease dramatically from 50% areal coverage for films grown at 900 °C to 5% at 1000 °C. This decrease in low-angle grain boundary density is correlated with an increase in the room-temperature photoluminescence intensity of A excitons and a decrease in the full-width-half maximum (FWHM) of the Raman A1g peak, which are typically indicative of a general reduction in defects in MoS2. However, the best transport properties (e.g., mean field-effect mobility mFE = 17.3 cm2/V s) were obtained in MoS2 monolayers grown at an intermediate temperature of 950 °C. It was found that as the growth temperature increased, small regions bound by high-angle boundaries begin to appear within the monolayer and increase in areal coverage, from ∼2% at 900 °C to ∼5% at 950 °C to ∼10% at 1000 °C. The growth temperature of 950 °C, therefore, provides an intermediate condition where the combined effects of low-angle and high-angle boundaries are minimized. The results of this study provide guidance on MOCVD growth and characterization that can be used to further optimize the performance of MoS2 2D-FETs.

     
    more » « less