Lyman α transits have been detected from several nearby exoplanets and are one of our best insights into the atmospheric escape process. However, due to ISM absorption, we typically only observe the transit signature in the blue-wing, making them challenging to interpret. This challenge has been recently highlighted by non-detections from planets thought to be undergoing vigorous escape. Pioneering 3D simulations have shown that escaping hydrogen is shaped into a cometary tail receding from the planet. Motivated by this work, we develop a simple model to interpret Lyman α transits. Using this framework, we show that the Lyman α transit depth is primarily controlled by the properties of the stellar tidal field rather than details of the escape process. Instead, the transit duration provides a direct measurement of the velocity of the planetary outflow. This result arises because the underlying physics is the distance a neutral hydrogen atom can travel before it is photoionized in the outflow. Thus, higher irradiation levels, expected to drive more powerful outflows, produce weaker, shorter Lyman α transits because the outflowing gas is ionized more quickly. Our framework suggests that the generation of energetic neutral atoms may dominate the transit signature early, but the acceleration of planetary material produces long tails. Thus, Lyman α transits do not primarily probe the mass-loss rates. Instead, they inform us about the velocity at which the escape mechanism is ejecting material from the planet, providing a clean test of predictions from atmospheric escape models.
Atmospheric escape from close-in exoplanets is thought to be crucial in shaping observed planetary populations. Recently, significant progress has been made in observing this process in action through excess absorption in-transit spectra and narrowband light curves. We model the escape of initially homogeneous planetary winds interacting with a stellar wind. The ram pressure balance of the two winds governs this interaction. When the impingement of the stellar wind on the planetary outflow is mild or moderate, the planetary outflow expands nearly spherically through its sonic surface before forming a shocked boundary layer. When the confinement is strong, the planetary outflow is redirected into a cometary tail before it expands to its sonic radius. The resultant transmission spectra at the He 1083 nm line are accurately represented by a 1D spherical wind solution in cases of mild to moderate stellar wind interaction. In cases of strong stellar wind interaction, the degree of absorption is enhanced and the cometary tail leads to an extended egress from transit. The crucial features of the wind–wind interaction are, therefore, encapsulated in the light curve of He 1083 nm equivalent width as a function of time. The possibility of extended He 1083 nm absorption well beyond the optical transit carries important implications for planning out-of-transit observations that serve as a baseline for in-transit data.
more » « less- Award ID(s):
- 1909203
- NSF-PAR ID:
- 10363627
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 926
- Issue:
- 2
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 226
- Size(s):
- Article No. 226
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT -
ABSTRACT We report a search for excess absorption in the 1083.2 nm line of ortho (triplet) helium during transits of TOI-1807b and TOI-2076b, 1.25 and 2.5-R⊕ planets on 0.55- and 10.4-d orbits around nearby ∼200 Myr-old K dwarf stars. We limit the equivalent width of any transit-associated absorption to <4 and <8 mÅ, respectively. We limit the escape of solar-composition atmospheres from TOI-1807b and TOI-2076b to ≲1 and ≲0.1M⊕Gyr−1, respectively, depending on wind temperature. The absence of a H/He signature for TOI-1807b is consistent with a measurement of mass indicating a rocky body and the prediction by a hydrodynamic model that any H-dominated atmosphere would be unstable and already have been lost. Differential spectra obtained during the transit of TOI-2076b contain a He i-like feature, but this closely resembles the stellar line and extends beyond the transit interval. Until additional transits are observed, we suspect this to be the result of variation in the stellar He i line produced by rotation of active regions and/or flaring on the young, active host star. Non-detection of escape could mean that TOI-2076b is more massive than expected, the star is less EUV luminous, the models overestimate escape, or the planet has a H/He-poor atmosphere that is primarily molecules such as H2O. Photochemical models of planetary winds predict a semimajor axis at which triplet He i observations are most sensitive to mass-loss: TOI-2076b orbits near this optimum. Future surveys could use a distance criterion to increase the yield of detections.
-
Abstract Atmospheric escape shapes the fate of exoplanets, with statistical evidence for transformative mass loss imprinted across the mass–radius–insolation distribution. Here, we present transit spectroscopy of the highly irradiated, low-gravity, inflated hot Saturn HAT-P-67 b. The Habitable Zone Planet Finder spectra show a detection of up to 10% absorption depth of the 10833 Å helium triplet. The 13.8 hr of on-sky integration time over 39 nights sample the entire planet orbit, uncovering excess helium absorption preceding the transit by up to 130 planetary radii in a large leading tail. This configuration can be understood as the escaping material overflowing its small Roche lobe and advecting most of the gas into the stellar—and not planetary—rest frame, consistent with the Doppler velocity structure seen in the helium line profiles. The prominent leading tail serves as direct evidence for dayside mass loss with a strong day-/nightside asymmetry. We see some transit-to-transit variability in the line profile, consistent with the interplay of stellar and planetary winds. We employ one-dimensional Parker wind models to estimate the mass-loss rate, finding values on the order of 2 × 1013g s−1, with large uncertainties owing to the unknown X-ray and ultraviolet (XUV) flux of the F host star. The large mass loss in HAT-P-67 b represents a valuable example of an inflated hot Saturn, a class of planets recently identified to be rare, as their atmospheres are predicted to evaporate quickly. We contrast two physical mechanisms for runaway evaporation: ohmic dissipation and XUV irradiation, slightly favoring the latter.
-
Abstract Observations of present-day mass-loss rates for close-in transiting exoplanets provide a crucial check on models of planetary evolution. One common approach is to model the planetary absorption signal during the transit in lines like He
i 10830 with an isothermal Parker wind, but this leads to a degeneracy between the assumed outflow temperatureT 0and the mass-loss rate that can span orders of magnitude in . In this study, we re-examine the isothermal Parker wind model using an energy-limited framework. We show that in cases where photoionization is the only heat source, there is a physical upper limit to the efficiency parameterε corresponding to the maximal amount of heating. This allows us to rule out a subset of winds with high temperatures and large mass-loss rates as they do not generate enough heat to remain self-consistent. To demonstrate the utility of this framework, we consider spectrally unresolved metastable helium observations of HAT-P-11b, WASP-69b, and HAT-P-18b. For the former two planets, we find that only relatively weak ( g s−1) outflows can match the metastable helium observations while remaining energetically self-consistent, while for HAT-P-18b all of the Parker wind models matching the helium data are self-consistent. Our results are in good agreement with more detailed self-consistent simulations and constraints from high-resolution transit spectra. -
Abstract We present integral field spectroscopy toward and around J1044+0353, a rapidly growing, low-metallicity galaxy that produces extreme [O
iii ] line emission. A new map of the O32 flux ratio reveals a density-bounded ionization cone emerging from the starburst. The interaction of the hydrogen-ionizing radiation, produced by the very young starburst, with a cavity previously carved out by a galactic outflow, whose apex lies well outside the starburst region, determines the pathway for global Lyman continuum (LyC) escape. In the region within a few hundred parsecs of the young starburst, we demonstrate that superbubble breakthrough and blowout contribute distinct components to the [Oiii ] line profile: broad and very broad emission line wings, respectively. We draw attention to the large [Oiii ] luminosity of the broad component and argue that this emission comes from photoionized, superbubble shells rather than a galactic wind as is often assumed. The spatially resolved Heii λ 4686 nebula appears to be photoionized by young star clusters. Stellar wind emission from these stars is likely the source of line wings detected on the Heii line profile. This broader Heii component indicates slow stellar winds, consistent with an increase in stellar rotation (and a decrease in effective escape speed) at the metallicity of J1044+0353. At least in J1044+0353, the recent star formation history plays a critical role in generating a global pathway for LyC escape, and the anisotropic escape would likely be missed by direct observations of the LyC.