skip to main content

This content will become publicly available on December 1, 2022

Title: Asymptomatic individuals can increase the final epidemic size under adaptive human behavior
Abstract Infections produced by non-symptomatic (pre-symptomatic and asymptomatic) individuals have been identified as major drivers of COVID-19 transmission. Non-symptomatic individuals, unaware of the infection risk they pose to others, may perceive themselves—and be perceived by others—as not presenting a risk of infection. Yet, many epidemiological models currently in use do not include a behavioral component, and do not address the potential consequences of risk misperception. To study the impact of behavioral adaptations to the perceived infection risk, we use a mathematical model that incorporates the behavioral decisions of individuals, based on a projection of the system’s future state over a finite planning horizon. We found that individuals’ risk misperception in the presence of non-symptomatic individuals may increase or reduce the final epidemic size. Moreover, under behavioral response the impact of non-symptomatic infections is modulated by symptomatic individuals’ behavior. Finally, we found that there is an optimal planning horizon that minimizes the final epidemic size.
; ; ;
Award ID(s):
1633028 1916805 1918656 2028004 2027541
Publication Date:
Journal Name:
Scientific Reports
Sponsoring Org:
National Science Foundation
More Like this
  1. SARS-CoV-2 is an international public health emergency; high transmissibility and morbidity and mortality can result in the virus overwhelming health systems. Combinations of social distancing, and test, trace, and isolate strategies can reduce the number of new infections per infected individual below 1, thus driving declines in case numbers, but may be both challenging and costly. These interventions must also be maintained until development and (now likely) mass deployment of a vaccine (or therapeutics), since otherwise, many susceptible individuals are still at risk of infection. We use a simple analytical model to explore how low levels of infection, combined withmore »vaccination, determine the trajectory to community immunity. Understanding the repercussions of the biological characteristics of the viral life cycle in this scenario is of considerable importance. We provide a simple description of this process by modelling the scenario where the effective reproduction number R eff is maintained at 1. Since the additional complexity imposed by the strength and duration of transmission-blocking immunity is not yet clear, we use our framework to probe the impact of these uncertainties. Through intuitive analytical relations, we explore how the necessary magnitude of vaccination rates and mitigation efforts depends crucially on the durations of natural and vaccinal immunity. We also show that our framework can encompass seasonality or preexisting immunity due to epidemic dynamics prior to strong mitigation measures. Taken together, our simple conceptual model illustrates the importance of individual and vaccinal immunity for community immunity, and that the quantification of individuals immunized against SARS-CoV-2 is paramount.« less
  2. School closures may reduce the size of social networks among children, potentially limiting infectious disease transmission. To estimate the impact of K–12 closures and reopening policies on children's social interactions and COVID-19 incidence in California's Bay Area, we collected data on children's social contacts and assessed implications for transmission using an individual-based model. Elementary and Hispanic children had more contacts during closures than high school and non-Hispanic children, respectively. We estimated that spring 2020 closures of elementary schools averted 2167 cases in the Bay Area (95% CI: −985, 5572), fewer than middle (5884; 95% CI: 1478, 11.550), high school (8650;more »95% CI: 3054, 15 940) and workplace (15 813; 95% CI: 9963, 22 617) closures. Under assumptions of moderate community transmission, we estimated that reopening for a four-month semester without any precautions will increase symptomatic illness among high school teachers (an additional 40.7% expected to experience symptomatic infection, 95% CI: 1.9, 61.1), middle school teachers (37.2%, 95% CI: 4.6, 58.1) and elementary school teachers (4.1%, 95% CI: −1.7, 12.0). However, we found that reopening policies for elementary schools that combine universal masking with classroom cohorts could result in few within-school transmissions, while high schools may require masking plus a staggered hybrid schedule. Stronger community interventions (e.g. remote work, social distancing) decreased the risk of within-school transmission across all measures studied, with the influence of community transmission minimized as the effectiveness of the within-school measures increased.« less
  3. Background: Drivers gather most of the information they need to drive by looking at the world around them and at visual displays within the vehicle. Navigation systems automate the way drivers navigate. In using these systems, drivers offload both tactical (route following) and strategic aspects (route planning) of navigational tasks to the automated SatNav system, freeing up cognitive and attentional resources that can be used in other tasks (Burnett, 2009). Despite the potential benefits and opportunities that navigation systems provide, their use can also be problematic. For example, research suggests that drivers using SatNav do not develop as much environmentalmore »spatial knowledge as drivers using paper maps (Waters & Winter, 2011; Parush, Ahuvia, & Erev, 2007). With recent growth and advances of augmented reality (AR) head-up displays (HUDs), there are new opportunities to display navigation information directly within a driver’s forward field of view, allowing them to gather information needed to navigate without looking away from the road. While the technology is promising, the nuances of interface design and its impacts on drivers must be further understood before AR can be widely and safely incorporated into vehicles. Specifically, an impact that warrants investigation is the role of AR HUDS in spatial knowledge acquisition while driving. Acquiring high levels of spatial knowledge is crucial for navigation tasks because individuals who have greater levels of spatial knowledge acquisition are more capable of navigating based on their own internal knowledge (Bolton, Burnett, & Large, 2015). Moreover, the ability to develop an accurate and comprehensive cognitive map acts as a social function in which individuals are able to navigate for others, provide verbal directions and sketch direction maps (Hill, 1987). Given these points, the relationship between spatial knowledge acquisition and novel technologies such as AR HUDs in driving is a relevant topic for investigation. Objectives: This work explored whether providing conformal AR navigational cues improves spatial knowledge acquisition (as compared to traditional HUD visual cues) to assess the plausibility and justification for investment in generating larger FOV AR HUDs with potentially multiple focal planes. Methods: This study employed a 2x2 between-subjects design in which twenty-four participants were counterbalanced by gender. We used a fixed base, medium fidelity driving simulator for where participants drove while navigating with one of two possible HUD interface designs: a world-relative arrow post sign and a screen-relative traditional arrow. During the 10-15 minute drive, participants drove the route and were encouraged to verbally share feedback as they proceeded. After the drive, participants completed a NASA-TLX questionnaire to record their perceived workload. We measured spatial knowledge at two levels: landmark and route knowledge. Landmark knowledge was assessed using an iconic recognition task, while route knowledge was assessed using a scene ordering task. After completion of the study, individuals signed a post-trial consent form and were compensated $10 for their time. Results: NASA-TLX performance subscale ratings revealed that participants felt that they performed better during the world-relative condition but at a higher rate of perceived workload. However, in terms of perceived workload, results suggest there is no significant difference between interface design conditions. Landmark knowledge results suggest that the mean number of remembered scenes among both conditions is statistically similar, indicating participants using both interface designs remembered the same proportion of on-route scenes. Deviance analysis show that only maneuver direction had an influence on landmark knowledge testing performance. Route knowledge results suggest that the proportion of scenes on-route which were correctly sequenced by participants is similar under both conditions. Finally, participants exhibited poorer performance in the route knowledge task as compared to landmark knowledge task (independent of HUD interface design). Conclusions: This study described a driving simulator study which evaluated the head-up provision of two types of AR navigation interface designs. The world-relative condition placed an artificial post sign at the corner of an approaching intersection containing a real landmark. The screen-relative condition displayed turn directions using a screen-fixed traditional arrow located directly ahead of the participant on the right or left side on the HUD. Overall results of this initial study provide evidence that the use of both screen-relative and world-relative AR head-up display interfaces have similar impact on spatial knowledge acquisition and perceived workload while driving. These results contrast a common perspective in the AR community that conformal, world-relative graphics are inherently more effective. This study instead suggests that simple, screen-fixed designs may indeed be effective in certain contexts.« less
  4. Woźniakowski, Grzegorz (Ed.)
    Human behavioral change around biosecurity in response to increased awareness of disease risks is a critical factor in modeling animal disease dynamics. Here, biosecurity is referred to as implementing control measures to decrease the chance of animal disease spreading. However, social dynamics are largely ignored in traditional livestock disease models. Not accounting for these dynamics may lead to substantial bias in the predicted epidemic trajectory. In this research, an agent-based model is developed by integrating the human decision-making process into epidemiological processes. We simulate human behavioral change on biosecurity practices following an increase in the regional disease incidence. We applymore »the model to beef cattle production systems in southwest Kansas, United States, to examine the impact of human behavior factors on a hypothetical foot-and-mouth disease outbreak. The simulation results indicate that heterogeneity of individuals regarding risk attitudes significantly affects the epidemic dynamics, and human-behavior factors need to be considered for improved epidemic forecasting. With the same initial biosecurity status, increasing the percentage of risk-averse producers in the total population using a targeted strategy can more effectively reduce the number of infected producer locations and cattle losses compared to a random strategy. In addition, the reduction in epidemic size caused by the shifting of producers’ risk attitudes towards risk-aversion is heavily dependent on the initial biosecurity level. A comprehensive investigation of the initial biosecurity status is recommended to inform risk communication strategy design.« less
  5. In this paper we develop a multiscale model combining social-force-based pedestrian movement with a population level stochastic infection transmission dynamics framework. The model is then applied to study the infection transmission within airplanes and the transmission of the Ebola virus through casual contacts. Drastic limitations on air-travel during epidemics, such as during the 2014 Ebola outbreak in West Africa, carry considerable economic and human costs. We use the computational model to evaluate the effects of passenger movement within airplanes and air-travel policies on the geospatial spread of infectious diseases. We find that boarding policy by an airline is more criticalmore »for infection propagation compared to deplaning policy. Enplaning in two sections resulted in fewer infections than the currently followed strategy with multiple zones. In addition, we found that small commercial airplanes are better than larger ones at reducing the number of new infections in a flight. Aggregated results indicate that passenger movement strategies and airplane size predicted through these network models can have significant impact on an event like the 2014 Ebola epidemic. The methodology developed here is generic and can be readily modified to incorporate the impact from the outbreak of other directly transmitted infectious diseases.« less