skip to main content

Title: The luminosity-dependent contribution from the broad-line region to the wavelength-dependent lags in Mrk 110
ABSTRACT

We have measured the wavelength-dependent lags between the X-ray, ultraviolet, and optical bands in the high-accretion rate ($L/L_{\rm Edd}\approx 40{{\ \rm per\ cent}}$) active galactic nucleus (AGN) Mrk 110 during two intensive monitoring campaigns in February and September 2019. After including the 2017 data published by Vincentelli et al., we divided the observations into three intervals with different X-ray luminosities. The first interval has the lowest X-ray luminosity and did not exhibit the U-band excess positive lag, or the X-ray excess negative lag that is seen in most AGNs. However, these excess lags are seen in the two subsequent intervals of higher X-ray luminosity. Although the data are limited, the excess lags appear to scale with X-ray luminosity. Our modelling shows that lags expected from reprocessing of X-rays by the accretion disc vary hardly at all with increasing luminosity. Therefore, as the U-band excess almost certainly arises from Balmer-continuum emission from the broad-line region (BLR), we attribute these lag changes to changes in the contribution from the BLR. The change is easily explained by the usual increase in the inner radius of the BLR with increasing ionizing luminosity.

Authors:
; ; ; ; ; ; ;
Award ID(s):
1909199
Publication Date:
NSF-PAR ID:
10363640
Journal Name:
Monthly Notices of the Royal Astronomical Society: Letters
Volume:
512
Issue:
1
Page Range or eLocation-ID:
p. L33-L38
ISSN:
1745-3925
Publisher:
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In recent years, continuum-reverberation mapping involving high-cadence UV/optical monitoring campaigns of nearby active galactic nuclei has been used to infer the size of their accretion disks. One of the main results from these campaigns has been that in many cases the accretion disks appear too large, by a factor of 2–3, compared to standard models. Part of this may be due to diffuse continuum emission from the broad-line region (BLR), which is indicated by excess lags around the Balmer jump. Standard cross-correlation lag-analysis techniques are usually used to just recover the peak or centroid lag and cannot easily distinguish between reprocessing from the disk and BLR. However, frequency-resolved lag analysis, where the lag is determined at each Fourier frequency, has the potential to separate out reprocessing on different size scales. Here we present simulations to demonstrate the potential of this method and then apply a maximum-likelihood approach to determine frequency-resolved lags in NGC 5548. We find that the lags in NGC 5548 generally decrease smoothly with increasing frequency, and are not easily described by accretion-disk reprocessing alone. The standard cross-correlation lags are consistent with lags at frequencies lower than 0.1 day−1, indicating they are dominated from reprocessing at sizemore »scales greater than ∼10 light days. A combination of a more distant reprocessor, consistent with the BLR, along with a standard-sized accretion disk is more consistent with the observed lags than a larger disk alone.

    « less
  2. ABSTRACT

    Soft X-ray emission (0.5–2.0 keV) plays a pivotal role in regulating the optical and ultraviolet (UV) emission in the active galactic nuclei (AGNs). We collected a sample of 1811 AGNs from the SDSS database and obtained various parameters of Balmer lines, optical continuum, Mg ii line & UV continuum and studied their dependencies on soft X-ray luminosity. Based on the linear regression analysis, we found that FWHM$_{\rm {Mg\,\,\small {II}}}$ ∝ FWHM$_{\text{H}\beta }^{0.554}$ suggesting that UV emission is arising from a region relatively outside the broad-line region (BLR) associated to the Hβ emission and found a strong correlation between optical and UV luminosities (L$_{\rm {Mg\,\,\small {II}}}$ ∝ $L_{\rm {H}\beta }^{0.822}$). It was noticed that the dependency of optical continuum luminosities on soft excess changes with the redshift (LX ∝ L$^{0.596}_{5100\, \mathring{\rm A}}$ for z < 0.5 and LX ∝ L$^{0.429}_{5100\, \mathring{\rm A}}$ for z > 0.5). The full width at half-maximum components of Hβ and Mg ii core components were found to be virialized and is not affected by the soft excess emission whereas the wings of Mg ii display a dependency. We estimated a relation viz. LX ∝L$^{0.520}_{3000\, \mathring{\rm A}}$ FWHM$^{0.525}_{\rm {Mg\,\,\small {II}}}$ and found to be well in agreement with a proposedmore »physical scenario. All the derived relations were used to understand the intermodulating association of the BLR and disc in the AGNs.

    « less
  3. Abstract

    We carried out spectroscopic monitoring of 21 low-redshift Seyfert 1 galaxies using the Kast double spectrograph on the 3 m Shane telescope at Lick Observatory from 2016 April to 2017 May. Targeting active galactic nuclei (AGNs) with luminosities ofλLλ(5100 Å) ≈ 1044erg s−1and predicted Hβlags of ∼20–30 days or black hole masses of 107–108.5M, our campaign probes luminosity-dependent trends in broad-line region (BLR) structure and dynamics as well as to improve calibrations for single-epoch estimates of quasar black hole masses. Here we present the first results from the campaign, including Hβemission-line light curves, integrated Hβlag times (8–30 days) measured againstV-band continuum light curves, velocity-resolved reverberation lags, line widths of the broad Hβcomponents, and virial black hole mass estimates (107.1–108.1M). Our results add significantly to the number of existing velocity-resolved lag measurements and reveal a diversity of BLR gas kinematics at moderately high AGN luminosities. AGN continuum luminosity appears not to be correlated with the type of kinematics that its BLR gas may exhibit. Follow-up direct modeling of this data set will elucidate the detailed kinematics and provide robust dynamical black hole masses for several objects in this sample.

  4. ABSTRACT

    We report on daily monitoring of the Seyfert galaxy ngc 7469, around 95 and 143 GHz, with the iram (Institut de Radioastronomie Millimetrique) 30- m radio telescope, and with the Swift X-ray and UV/optical telescopes, over an overlapping period of 45 d. The source was observed on 36 d with iram, and the flux density in both mm bands was on average ∼10 mJy, but varied by $\pm 50{{\ \rm per\ cent}}$, and by up to a factor of 2 between days. The present iram variability parameters are consistent with earlier monitoring, which had only 18 data points. The X-ray light curve of ngc 7469 over the same period spans a factor of 5 in flux with small uncertainties. Similar variability in the mm band and in the X-rays lends support to the notion of both sources originating in the same physical component of the active galactic nucleus (AGN), likely the accretion disc corona. Simultaneous monitoring in eight UV/optical bands shows much less variability than the mm and X-rays, implying this light originates from a different AGN component, likely the accretion disc itself. We use a tentative 14-d lag of the X-ray light curve with respect to the 95 GHz light curve to speculate on coronal implications. Moremore »precise mm-band measurements of a sample of X-ray-variable AGN are needed, preferably also on time-scales of less than a day where X-rays vary dramatically, in order to properly test the physical connection between the two bands.

    « less
  5. ABSTRACT We present the first intensive continuum reverberation mapping study of the high accretion-rate Seyfert galaxy Mrk 110. The source was monitored almost daily for more than 200 d with the Swift X-ray and ultraviolet (UV)/optical telescopes, supported by ground-based observations from Las Cumbres Observatory, the Liverpool Telescope, and the Zowada Observatory, thus extending the wavelength coverage to 9100 Å. Mrk 110 was found to be significantly variable at all wavebands. Analysis of the intraband lags reveals two different behaviours, depending on the time-scale. On time-scales shorter than 10 d the lags, relative to the shortest UV waveband (∼1928 Å), increase with increasing wavelength up to a maximum of ∼2 d lag for the longest waveband (∼9100 Å), consistent with the expectation from disc reverberation. On longer time-scales, however, the g-band lags the Swift BAT hard X-rays by ∼10 d, with the z-band lagging the g-band by a similar amount, which cannot be explained in terms of simple reprocessing from the accretion disc. We interpret this result as an interplay between the emission from the accretion disc and diffuse continuum radiation from the broad-line region.