skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Intensified inundation shifts a freshwater wetland from a CO 2 sink to a source
Abstract Climate change has altered global precipitation patterns and has led to greater variation in hydrological conditions. Wetlands are important globally for their soil carbon storage. Given that wetland carbon processes are primarily driven by hydrology, a comprehensive understanding of the effect of inundation is needed. In this study, we evaluated the effect of water level (WL) and inundation duration (ID) on carbon dioxide (CO2) fluxes by analysing a 10‐year (2008–2017) eddy covariance dataset from a seasonally inundated freshwater marl prairie in the Everglades National Park. Both gross primary production (GPP) and ecosystem respiration (ER) rates showed declines under inundation. While GPP rates decreased almost linearly as WL and ID increased, ER rates were less responsive to WL increase beyond 30 cm and extended inundation periods. The unequal responses between GPP and ER caused a weaker net ecosystem CO2sink strength as inundation intensity increased. Eventually, the ecosystem tended to become a net CO2source on a daily basis when either WL exceeded 46 cm or inundation lasted longer than 7 months. Particularly, with an extended period of high‐WLs in 2016 (i.e., WL remained >40 cm for >9 months), the ecosystem became a CO2source, as opposed to being a sink or neutral for CO2in other years. Furthermore, the extreme inundation in 2016 was followed by a 4‐month postinundation period with lower net ecosystem CO2uptake compared to other years. Given that inundation plays a key role in controlling ecosystem CO2balance, we suggest that a future with more intensive inundation caused by climate change or water management activities can weaken the CO2sink strength of the Everglades freshwater marl prairies and similar wetlands globally, creating a positive feedback to climate change.  more » « less
Award ID(s):
1832229 1237517 0620409 1807533
PAR ID:
10363647
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Change Biology
Volume:
25
Issue:
10
ISSN:
1354-1013
Page Range / eLocation ID:
p. 3319-3333
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract How aquatic primary productivity influences the carbon (C) sequestering capacity of wetlands is uncertain. We evaluated the magnitude and variability in aquatic C dynamics and compared them to net ecosystem CO 2 exchange (NEE) and ecosystem respiration ( R eco ) rates within calcareous freshwater wetlands in Everglades National Park. We continuously recorded 30-min measurements of dissolved oxygen (DO), water level, water temperature ( T water ), and photosynthetically active radiation (PAR). These measurements were coupled with ecosystem CO 2 fluxes over 5 years (2012–2016) in a long-hydroperiod peat-rich, freshwater marsh and a short-hydroperiod, freshwater marl prairie. Daily net aquatic primary productivity (NAPP) rates indicated both wetlands were generally net heterotrophic. Gross aquatic primary productivity (GAPP) ranged from 0 to − 6.3 g C m −2  day −1 and aquatic respiration ( R Aq ) from 0 to 6.13 g C m −2  day −1 . Nonlinear interactions between water level, T water , and GAPP and R Aq resulted in high variability in NAPP that contributed to NEE. Net aquatic primary productivity accounted for 4–5% of the deviance explained in NEE rates. With respect to the flux magnitude, daily NAPP was a greater proportion of daily NEE at the long-hydroperiod site (mean = 95%) compared to the short-hydroperiod site (mean = 64%). Although we have confirmed the significant contribution of NAPP to NEE in both long- and short-hydroperiod freshwater wetlands, the decoupling of the aquatic and ecosystem fluxes could largely depend on emergent vegetation, the carbonate cycle, and the lateral C flux. 
    more » « less
  2. Net ecosystem carbon balance is a comprehensive assessment of ecosystem function that can test restoration effectiveness. Coastal peatlands are globally important carbon sinks that are vulnerable to carbon loss with saltwater intrusion. It is uncertain how wetland carbon stocks and fluxes change during freshwater restoration following exposure to saltwater and elevated nutrients. We restored freshwater to sawgrass (Cladium jamaicense) peat monoliths from freshwater marshes of the Everglades (Florida, U.S.A.) that had previously been exposed to elevated salinity (approximately9 ppt) and phosphorus (P) loading (1 g P m−2year−1) in wetland mesocosms. We quantified changes in water and soil physicochemistry, plant and soil carbon and nutrient standing stocks, and net ecosystem productivity during restoration. Added freshwater immediately reduced porewater salinity from >8 to approximately 2 ppt, but elevated porewater dissolved organic carbon persisted. Above‐ and belowground biomass, leaf P concentrations, and instantaneous rates of gross ecosystem productivity (GEP) and ecosystem respiration (ER) remained elevated from prior added P. Modeled monthly GEP and ER were higher in marshes with saltwater and P legacies, resulting in negative net ecosystem productivities that were up to 12× lower than controls. Leaf litter breakdown rates and litter P concentrations were 2× higher in marshes with legacies of added saltwater and P. Legacies of saltwater and P on carbon loss persisted despite freshwater restoration, but recovery was greatest for freshwater marshes exposed to saltwater alone. Our results suggest that restoration in nutrient‐limited freshwater wetlands exposed to saltwater intrusion and nutrient enrichment is a slow process. 
    more » « less
  3. Abstract The advancement of spring and the differential ability of organisms to respond to changes in plant phenology may lead to “phenological mismatches” as a result of climate change. One potential for considerable mismatch is between migratory birds and food availability in northern breeding ranges, and these mismatches may have consequences for ecosystem function. We conducted a three‐year experiment to examine the consequences for CO2exchange of advanced spring green‐up and altered timing of grazing by migratory Pacific black brant in a coastal wetland in western Alaska. Experimental treatments represent the variation in green‐up and timing of peak grazing intensity that currently exists in the system. Delayed grazing resulted in greater net ecosystem exchange (NEE) and gross primary productivity (GPP), while early grazing reduced CO2uptake with the potential of causing net ecosystem carbon (C) loss in late spring and early summer. Conversely, advancing the growing season only influenced ecosystem respiration (ER), resulting in a small increase in ER with no concomitant impact on GPP or NEE. The experimental treatment that represents the most likely future, with green‐up advancing more rapidly than arrival of migratory geese, results in NEE changing by 1.2 µmol m−2 s−1toward a greater CO2sink in spring and summer. Increased sink strength, however, may be mitigated by early arrival of migratory geese, which would reduce CO2uptake. Importantly, while the direct effect of climate warming on phenology of green‐up has a minimal influence on NEE, the indirect effect of climate warming manifest through changes in the timing of peak grazing can have a significant impact on C balance in northern coastal wetlands. Furthermore, processes influencing the timing of goose migration in the winter range can significantly influence ecosystem function in summer habitats. 
    more » « less
  4. Abstract Arctic‐boreal landscapes are experiencing profound warming, along with changes in ecosystem moisture status and disturbance from fire. This region is of global importance in terms of carbon feedbacks to climate, yet the sign (sink or source) and magnitude of the Arctic‐boreal carbon budget within recent years remains highly uncertain. Here, we provide new estimates of recent (2003–2015) vegetation gross primary productivity (GPP), ecosystem respiration (Reco), net ecosystem CO2exchange (NEE;Reco − GPP), and terrestrial methane (CH4) emissions for the Arctic‐boreal zone using a satellite data‐driven process‐model for northern ecosystems (TCFM‐Arctic), calibrated and evaluated using measurements from >60 tower eddy covariance (EC) sites. We used TCFM‐Arctic to obtain daily 1‐km2flux estimates and annual carbon budgets for the pan‐Arctic‐boreal region. Across the domain, the model indicated an overall average NEE sink of −850 Tg CO2‐C year−1. Eurasian boreal zones, especially those in Siberia, contributed to a majority of the net sink. In contrast, the tundra biome was relatively carbon neutral (ranging from small sink to source). Regional CH4emissions from tundra and boreal wetlands (not accounting for aquatic CH4) were estimated at 35 Tg CH4‐C year−1. Accounting for additional emissions from open water aquatic bodies and from fire, using available estimates from the literature, reduced the total regional NEE sink by 21% and shifted many far northern tundra landscapes, and some boreal forests, to a net carbon source. This assessment, based on in situ observations and models, improves our understanding of the high‐latitude carbon status and also indicates a continued need for integrated site‐to‐regional assessments to monitor the vulnerability of these ecosystems to climate change. 
    more » « less
  5. Datasets include hydrology (water level and salinity), net ecosystem exchange of CO2, photosynthetically active radiation (PAR), and air temperature for a freshwater marl prairie, brackish marsh ecotone, and saline scrub mangrove forest. Data were derived from multiple sources, including two sites from the South Florida Water Management District (SFWMD) DBhydro web database, two sites from the Florida Coastal Everglades Long Term Ecological Research (FCE-LTER) program and three AmeriFlux sites in the Southeastern Everglades region. Ameriflux sites were co-located with FCE-LTER sites. To understand the effects of sea level rise and freshwater management on landscape carbon exchange (C), we measured the net ecosystem exchange of CO2 (NEE) between subtropical wetland ecosystems and the atmosphere along a dynamic salinity gradient. Ecosystems were representative of freshwater marl prairies, brackish marsh ecotones, and saline scrub mangrove forests. In the southeastern Everglades, the magnitude of environmental change was greatest along the coast, where mangrove scrub forests exhibited a greater capacity to maintain CO2 uptake with changing conditions. 
    more » « less