skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Simulation of Stark-broadened Hydrogen Balmer-line Shapes for DA White Dwarf Synthetic Spectra
Abstract White dwarfs (WDs) are useful across a wide range of astrophysical contexts. The appropriate interpretation of their spectra relies on the accuracy of WD atmosphere models. One essential ingredient of atmosphere models is the theory used for the broadening of spectral lines. To date, the models have relied on Vidal et al., known as the unified theory of line broadening (VCS). There have since been advancements in the theory; however, the calculations used in model atmosphere codes have only received minor updates. Meanwhile, advances in instrumentation and data have uncovered indications of inaccuracies: spectroscopic temperatures are roughly 10% higher and spectroscopic masses are roughly 0.1Mhigher than their photometric counterparts. The evidence suggests that VCS-based treatments of line profiles may be at least partly responsible. Gomez et al. developed a simulation-based line-profile code Xenomorph using an improved theoretical treatment that can be used to inform questions around the discrepancy. However, the code required revisions to sufficiently decrease noise for use in model spectra and to make it computationally tractable and physically realistic. In particular, we investigate three additional physical effects that are not captured in the VCS calculations: ion dynamics, higher-order multipole expansion, and an expanded basis set. We also implement a simulation-based approach to occupation probability. The present study limits the scope to the first three hydrogen Balmer transitions (Hα, Hβ, and Hγ). We find that screening effects and occupation probability have the largest effects on the line shapes and will likely have important consequences in stellar synthetic spectra.  more » « less
Award ID(s):
1707419
PAR ID:
10363661
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
927
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 70
Size(s):
Article No. 70
Sponsoring Org:
National Science Foundation
More Like this
  1. For isolated white dwarf (WD) stars, fits to their observed spectra provide the most precise estimates of their effective temperatures and surface gravities. Even so, recent studies have shown that systematic offsets exist between such spectroscopic parameter determinations and those based on broadband photometry. These large discrepancies (10% in T eff , 0.1  M ⊙ in mass) provide scientific motivation for reconsidering the atomic physics employed in the model atmospheres of these stars. Recent simulation work of ours suggests that the most important remaining uncertainties in simulation-based calculations of line shapes are the treatment of 1) the electric field distribution and 2) the occupation probability (OP) prescription. We review the work that has been done in these areas and outline possible avenues for progress. 
    more » « less
  2. Abstract In order to better characterize the rich supernova remnant (SNR) population of M83 (NGC 5236), we have obtained high-resolution (∼85 km s−1) spectra of 119 of the SNRs and SNR candidates in M83 with Gemini/GMOS, as well as new spectra of the young SNRs B12-174a and SN 1957D. Most of the SNRs and SNR candidates have [Sii]:Hαratios that exceed 0.4. Combining these results with earlier studies we have carried out with MUSE and at lower spectroscopic resolution with GMOS, we have confirmed a total of 238 emission nebulae to be SNRs on the basis of their [Sii]:Hαratios, about half of which have emission lines that show velocity broadening greater than 100 km s−1, providing a kinematic confirmation that they are SNRs and not Hiiregions. Looking at the entire sample, we find a strong correlation between velocity widths and the line ratios of [Oi]λ6300:Hα, [Nii]λ6584:Hα, and [Sii]λλ6716, 6731:Hα. The density-sensitive [Sii]λ6716:λ6731 line ratio is strongly correlated with SNR diameter, but not with the velocity width. We discuss these results in the context of previously published shock models. 
    more » « less
  3. Abstract It remains to be ascertained whether sub-Neptune exoplanets primarily possess hydrogen-rich atmospheres or whether a population of H2O-rich water worlds lurks in their midst. Addressing this question requires improved modeling of water-rich exoplanetary atmospheres, both to predict and interpret spectroscopic observations and to serve as upper boundary conditions on interior structure calculations. Here, we present new models of hydrogen-helium-water atmospheres with water abundances ranging from solar to 100% water vapor. We improve upon previous models of high-water-content atmospheres by incorporating updated prescriptions for water self-broadening and a nonideal gas equation of state. Our model grid (https://umd.box.com/v/water-worlds) includes temperature–pressure profiles in radiative-convective equilibrium, along with their associated transmission and thermal emission spectra. We find that our model updates primarily act at high pressures, significantly impacting bottom-of-atmosphere temperatures, with implications for the accuracy of interior structure calculations. Upper-atmosphere conditions and spectroscopic observables are less impacted by our model updates, and we find that, under most conditions, retrieval codes built for hot Jupiters should also perform well on water-rich planets. We additionally quantify the observational degeneracies among both thermal emission and transmission spectra. We recover standard degeneracies with clouds and mean molecular weight for transmission spectra, and we find thermal emission spectra to be more readily distinguishable from one another in the water-poor (i.e., near-solar) regime. 
    more » « less
  4. Abstract OH megamasers (OHMs) are extragalactic masers found primarily in gas-rich galaxy major mergers. To date, only ∼120 OHMs have been cataloged since their discovery in 1982, and efforts to identify distinct characteristics of OHM host galaxies have remained inconclusive. As radio astronomy advances with next-generation telescopes and extensive 21 cm Hisurveys, precursors to the Square Kilometre Array are expected to detect the 18 cm OH masing line with significantly increased frequency, potentially expanding the known OHM population tenfold. These detections, however, risk confusion with lower-redshift Hiemitters unless accompanied by independent spectroscopic redshifts. Building on methods proposed by Roberts et al. for distinguishing these interloping OHMs via near- to mid-IR photometry and emission line frequencies, we apply these techniques to data from the Arecibo Legacy Fast ALFA [AreciboL-band Feed Array] (ALFALFA) survey and a preliminary Aperture Tile In Focus (Apertif) Hiemission line catalog from the Westerbork Synthesis Radio Telescope. Our study, utilizing the Apache Point Observatory 3.5 m telescope to obtain optical spectroscopic redshifts of 142 candidates (107 from ALFALFA and 35 from Apertif), confirms five new OHM host galaxies and reidentifies two previously catalogued OHMs misclassified as Hiemitters in ALFALFA. These findings support the predictions from Roberts et al. and underscore the evolving landscape of radio astronomy in the context of next-generation telescopes. 
    more » « less
  5. Calculations of line broadening are important for many different applications including plasma diagnostics and opacity calculations. One concern is that line-shape models employ many approximations that are not experimentally validated for most element conditions due to challenges with high-fidelity line-shape benchmark experiments. Until such experiments become available, we need to test approximations with ab-initio line-shape calculations. There are three primary formalisms to derive an electron-broadening operator: the impact theory (Baranger, Griem), relaxation theory (Fano), and kinetic theories (Zwanzig, Hussey), all of which give different expressions for electron broadening. The impact and relaxation theories approximate the density matrix as factorizeable while the kinetic theory has a more general density matrix. The impact and kinetic theories relate the electron broadening operator to collision amplitudes, while the relaxation theory has a more complicated formula using projection operators. Each theory has a different prediction for the width and shift of spectral lines, which will become apparent in strongly-coupled plasmas. We have made an effort to better understand the approximations and limitations of all of these approaches and to try to reconcile the differences between them. Here, we present the current status of our understanding of the electron-broadening theories and our preliminary attempt to unify the various formulae. Currently, we have found the projection operator to be necessary part of line broadening. We will be showing (for the first time) how the projection operator broadens spectral lines. 
    more » « less