skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: Simulation of Stark-broadened Hydrogen Balmer-line Shapes for DA White Dwarf Synthetic Spectra
Abstract White dwarfs (WDs) are useful across a wide range of astrophysical contexts. The appropriate interpretation of their spectra relies on the accuracy of WD atmosphere models. One essential ingredient of atmosphere models is the theory used for the broadening of spectral lines. To date, the models have relied on Vidal et al., known as the unified theory of line broadening (VCS). There have since been advancements in the theory; however, the calculations used in model atmosphere codes have only received minor updates. Meanwhile, advances in instrumentation and data have uncovered indications of inaccuracies: spectroscopic temperatures are roughly 10% higher and spectroscopic masses are roughly 0.1Mhigher than their photometric counterparts. The evidence suggests that VCS-based treatments of line profiles may be at least partly responsible. Gomez et al. developed a simulation-based line-profile code Xenomorph using an improved theoretical treatment that can be used to inform questions around the discrepancy. However, the code required revisions to sufficiently decrease noise for use in model spectra and to make it computationally tractable and physically realistic. In particular, we investigate three additional physical effects that are not captured in the VCS calculations: ion dynamics, higher-order multipole expansion, and an expanded basis set. We also implement a simulation-based approach to occupation probability. The present study limits the scope to the first three hydrogen Balmer transitions (Hα, Hβ, and Hγ). We find that screening effects and occupation probability have the largest effects on the line shapes and will likely have important consequences in stellar synthetic spectra.  more » « less
Award ID(s):
1707419
PAR ID:
10363661
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
927
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 70
Size(s):
Article No. 70
Sponsoring Org:
National Science Foundation
More Like this
  1. For isolated white dwarf (WD) stars, fits to their observed spectra provide the most precise estimates of their effective temperatures and surface gravities. Even so, recent studies have shown that systematic offsets exist between such spectroscopic parameter determinations and those based on broadband photometry. These large discrepancies (10% in T eff , 0.1  M ⊙ in mass) provide scientific motivation for reconsidering the atomic physics employed in the model atmospheres of these stars. Recent simulation work of ours suggests that the most important remaining uncertainties in simulation-based calculations of line shapes are the treatment of 1) the electric field distribution and 2) the occupation probability (OP) prescription. We review the work that has been done in these areas and outline possible avenues for progress. 
    more » « less
  2. Abstract In order to better characterize the rich supernova remnant (SNR) population of M83 (NGC 5236), we have obtained high-resolution (∼85 km s−1) spectra of 119 of the SNRs and SNR candidates in M83 with Gemini/GMOS, as well as new spectra of the young SNRs B12-174a and SN 1957D. Most of the SNRs and SNR candidates have [Sii]:Hαratios that exceed 0.4. Combining these results with earlier studies we have carried out with MUSE and at lower spectroscopic resolution with GMOS, we have confirmed a total of 238 emission nebulae to be SNRs on the basis of their [Sii]:Hαratios, about half of which have emission lines that show velocity broadening greater than 100 km s−1, providing a kinematic confirmation that they are SNRs and not Hiiregions. Looking at the entire sample, we find a strong correlation between velocity widths and the line ratios of [Oi]λ6300:Hα, [Nii]λ6584:Hα, and [Sii]λλ6716, 6731:Hα. The density-sensitive [Sii]λ6716:λ6731 line ratio is strongly correlated with SNR diameter, but not with the velocity width. We discuss these results in the context of previously published shock models. 
    more » « less
  3. Abstract It remains to be ascertained whether sub-Neptune exoplanets primarily possess hydrogen-rich atmospheres or whether a population of H2O-rich water worlds lurks in their midst. Addressing this question requires improved modeling of water-rich exoplanetary atmospheres, both to predict and interpret spectroscopic observations and to serve as upper boundary conditions on interior structure calculations. Here, we present new models of hydrogen-helium-water atmospheres with water abundances ranging from solar to 100% water vapor. We improve upon previous models of high-water-content atmospheres by incorporating updated prescriptions for water self-broadening and a nonideal gas equation of state. Our model grid (https://umd.box.com/v/water-worlds) includes temperature–pressure profiles in radiative-convective equilibrium, along with their associated transmission and thermal emission spectra. We find that our model updates primarily act at high pressures, significantly impacting bottom-of-atmosphere temperatures, with implications for the accuracy of interior structure calculations. Upper-atmosphere conditions and spectroscopic observables are less impacted by our model updates, and we find that, under most conditions, retrieval codes built for hot Jupiters should also perform well on water-rich planets. We additionally quantify the observational degeneracies among both thermal emission and transmission spectra. We recover standard degeneracies with clouds and mean molecular weight for transmission spectra, and we find thermal emission spectra to be more readily distinguishable from one another in the water-poor (i.e., near-solar) regime. 
    more » « less
  4. Context.The hydrogen deuteride (HD) molecule is an important deuterium tracer in astrophysical studies. The atmospheres of gas giants are dominated by molecular hydrogen, and the simultaneous observation of H2and HD lines provides reliable information on the D/H ratios on these planets. The reference spectroscopic parameters play a crucial role in such studies. Under the thermodynamic conditions encountered in these atmospheres, spectroscopic studies of HD require not only the knowledge of line intensities and positions but also accurate reference data on pressure-induced line shapes and shifts. Aims.Our aim is to provide accurate collision-induced line-shape parameters for HD lines that cover any thermodynamic conditions relevant to the atmospheres of giant planets, namely any relevant temperature, pressure, and perturbing gas composition (the H2–He mixture). Methods.We performed quantum-scattering calculations on our new, highly accurate ab initio potential energy surface (PES), and we used scattering S matrices obtained in this way to determine the collision-induced line-shape parameters. We used cavity ring-down spectroscopy to validate our theoretical methodology. Results.We report accurate collision-induced line-shape parameters for the pure rotational R(0), R(1), and R(2) lines, the most relevant HD lines for investigations of the atmospheres of the giant planets. Besides the basic Voigt-profile collisional parameters (i.e., the broadening and shift parameters), we also report their speed dependences and the complex Dicke parameter, which can influence the effective width and height of the HD lines up to almost a factor of 2 for giant planet conditions. The sub-percent-level accuracy reached in this work is a considerable improvement over previously available data. All the reported parameters (and their temperature dependences) are consistent with the HITRAN database format, hence allowing for the use of the HITRAN Application Programming Interface (HAPI) for generating the beyond-Voigt spectra of HD. 
    more » « less
  5. Abstract Accurate helium White Dwarf (DB) masses are critical for understanding the star’s evolution. DB masses derived from the spectroscopic and photometric methods are inconsistent. Photometric masses agree better with currently accepted DB evolutionary theories and are mostly consistent across a large range of surface temperatures. Spectroscopic masses rely on untested HeiStark line-shape and Van der Waals broadening predictions, show unexpected surface temperature trends, and are thus viewed as less reliable. To test this conclusion, we present in this paper detailed HeiStark line-shape measurements at conditions relevant to DB atmospheres (Telectron≈12,000–17,000 K,nelectron≈ 1017cm−3). We use X-rays from Sandia National Laboratories’Z-machine to create a uniform ≈120 mm long hydrogen–helium mixture plasma. Van der Waals broadening is negligible at our experimental conditions, allowing us to measure HeiStark profiles only. Hβ, which has been well-studied in our platform and elsewhere, serves as thenediagnostic. We find that HeiStark broadening models used in DB analyses are accurate within errors at tested conditions. It therefore seems unlikely that line-shape models are solely responsible for the observed spectroscopic mass trends. Our results should motivate the WD community to further scrutinize the validity of other spectroscopic and photometric input parameters, like atmospheric structure assumptions and convection corrections. These parameters can significantly change the derived DB mass. Identifying potential weaknesses in any input parameters could further our understanding of DBs, help elucidate their evolutionary origins, and strengthen confidence in both spectroscopic and photometric masses. 
    more » « less