Abstract Here we describe a new study of the supernova remnants (SNRs) and SNR candidates in nearby face-on spiral galaxy M83, based primarily on MUSE integral field spectroscopy. Our revised catalog of SNR candidates in M83 has 366 objects, 81 of which are reported here for the first time. Of these, 229 lie within the MUSE observation region, 160 of which have spectra with [Sii]:Hαratios exceeding 0.4, the value generally accepted as confirmation that an emission nebula is shock-heated. Combined with 51 SNR candidates outside the MUSE region with high [Sii]:Hαratios, there are 211 spectroscopically confirmed SNRs in M83, the largest number of confirmed SNRs in any external galaxy. MUSE’s combination of relatively high spectral resolution and broad wavelength coverage has allowed us to explore two other properties of SNRs that could serve as the basis of future SNR searches. Specifically, most of the objects identified as SNRs on the basis of [Sii]:Hαratios exhibit more velocity broadening and lower ratios of [Siii]:[Sii] emission than Hiiregions. A search for nebulae with the very broad emission lines expected from young, rapidly expanding remnants revealed none, except for the previously identified B12-174a. The SNRs identified in M83 are, with few exceptions, middle-aged interstellar medium (ISM) dominated ones. Smaller-diameter candidates show a larger range of velocity broadening and a larger range of gas densities than the larger-diameter objects, as expected if the SNRs expanding into denser gas brighten and then fade from view at smaller diameters than those expanding into a more tenuous ISM.
more »
« less
High-resolution Spectra of Supernova Remnants in M83
Abstract In order to better characterize the rich supernova remnant (SNR) population of M83 (NGC 5236), we have obtained high-resolution (∼85 km s−1) spectra of 119 of the SNRs and SNR candidates in M83 with Gemini/GMOS, as well as new spectra of the young SNRs B12-174a and SN 1957D. Most of the SNRs and SNR candidates have [Sii]:Hαratios that exceed 0.4. Combining these results with earlier studies we have carried out with MUSE and at lower spectroscopic resolution with GMOS, we have confirmed a total of 238 emission nebulae to be SNRs on the basis of their [Sii]:Hαratios, about half of which have emission lines that show velocity broadening greater than 100 km s−1, providing a kinematic confirmation that they are SNRs and not Hiiregions. Looking at the entire sample, we find a strong correlation between velocity widths and the line ratios of [Oi]λ6300:Hα, [Nii]λ6584:Hα, and [Sii]λλ6716, 6731:Hα. The density-sensitive [Sii]λ6716:λ6731 line ratio is strongly correlated with SNR diameter, but not with the velocity width. We discuss these results in the context of previously published shock models.
more »
« less
- Award ID(s):
- 1714281
- PAR ID:
- 10392211
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 943
- Issue:
- 1
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 15
- Size(s):
- Article No. 15
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract SN 2014C was originally classified as a Type Ib supernova, but at phaseϕ= 127 days, post-explosion strong Hαemission was observed. SN 2014C has since been observed in radio, infrared, optical and X-ray bands. Here we present new optical spectroscopic and photometric data spanningϕ= 947–2494 days post-explosion. We address the evolution of the broadened Hαemission line, as well as broad [Oiii] emission and other lines. We also conduct a parallel analysis of all publicly available multiwavelength data. From our spectra, we find a nearly constant HαFWHM velocity width of ∼2000 km s−1that is significantly lower than that of other broadened atomic transitions (∼3000–7000 km s−1) present in our spectra ([Oi]λ6300; [Oiii]λλ4959, 5007; Heiλ7065; [Caii]λλ7291, 7324). The late radio data demand a fast forward shock (∼10,000 km s−1atϕ= 1700 days) in rarified matter that contrasts with the modest velocity of the Hα. We propose that the infrared flux originates from a toroidal-like structure of hydrogen surrounding the progenitor system, while later emission at other wavelengths (radio, X-ray) likely originates predominantly from the reverse shock in the ejecta and the forward shock in the quasi-spherical progenitor He-wind. We propose that the Hαemission arises in the boundary layer between the ejecta and torus. We also consider the possible roles of a pulsar and a binary companion.more » « less
-
Abstract We present new high-spectral-resolution observations (R=λ/Δλ= 7000) of the filamentary nebula surrounding NGC 1275, the central galaxy of the Perseus cluster. These observations have been obtained with SITELLE, an imaging Fourier transform spectrometer installed on the Canada–France–Hawai Telescope with a field of view of , encapsulating the entire filamentary structure of ionized gas despite its large size of 80 kpc × 50 kpc. Here, we present renewed fluxes, velocities, and velocity dispersion maps that show in great detail the kinematics of the optical nebula at [Sii]λ6716, [Sii]λ6731, [Nii]λ6584, Hα(6563 Å), and [Nii]λ6548. These maps reveal the existence of a bright flattened disk-shaped structure in the core extending tor∼10 kpc and dominated by a chaotic velocity field. This structure is located in the wake of X-ray cavities and characterized by a high mean velocity dispersion of 134 km s−1. The disk-shaped structure is surrounded by an extended array of filaments spread out tor∼ 50 kpc that are 10 times fainter in flux, remarkably quiescent, and have a uniform mean velocity dispersion of 44 km s−1. This stability is puzzling given that the cluster core exhibits several energetic phenomena. Based on these results, we argue that there are two mechanisms that form multiphase gas in clusters of galaxies: a first triggered in the wake of X-ray cavities leading to more turbulent multiphase gas and a second, distinct mechanism, that is gentle and leads to large-scale multiphase gas spreading throughout the core.more » « less
-
Abstract We analyze a sample of 25 [Nev] (λ3426) emission-line galaxies at 1.4 <z< 2.3 using Hubble Space Telescope/Wide Field Camera 3 G102 and G141 grism observations from the CANDELS LyαEmission at Reionization (CLEAR) survey. [Nev] emission probes extremely energetic photoionization (creation potential of 97.11 eV) and is often attributed to energetic radiation from active galactic nuclei (AGNs), shocks from supernovae, or an otherwise very hard ionizing spectrum from the stellar continuum. In this work, we use [Nev] in conjunction with other rest-frame UV/optical emission lines ([Oii]λλ3726, 3729, [Neiii]λ3869, Hβ, [Oiii]λλ4959, 5007, Hα+[Nii]λλ6548, 6583, [Sii]λλ6716, 6731), deep (2–7 Ms) X-ray observations (from Chandra), and mid-infrared imaging (from Spitzer) to study the origin of this emission and to place constraints on the nature of the ionizing engine. The majority of the [Nev]-detected galaxies have properties consistent with ionization from AGNs. However, for our [Nev]-selected sample, the X-ray luminosities are consistent with local (z≲ 0.1) X-ray-selected Seyferts, but the [Nev] luminosities are more consistent with those fromz∼ 1 X-ray-selected QSOs. The excess [Nev] emission requires either reduced hard X-rays or a ∼0.1 keV excess. We discuss possible origins of the apparent [Nev] excess, which could be related to the “soft (X-ray) excess” observed in some QSOs and Seyferts and/or be a consequence of a complex/anisotropic geometry for the narrow-line region, combined with absorption from a warm, relativistic wind ejected from the accretion disk. We also consider implications for future studies of extreme high-ionization systems in the epoch of reionization (z≳ 6) with the James Webb Space Telescope.more » « less
-
We present JWST/NIRSpec integral field data of the quasar PJ308-21 atz = 6.2342. As shown by previous ALMA and HST imaging, the quasar has two companion sources, interacting with the quasar host galaxy. The high-resolution G395H/290LP NIRSpec spectrum covers the 2.87 − 5.27 μm wavelength range and shows the rest-frame optical emission of the quasar with exquisite quality (signal-to-noise ratio ∼100 − 400 per spectral element). Based on the Hβline from the broad line region, we obtain an estimate of the black hole massMBH, Hβ ∼ 2.7 × 109 M⊙. This value is within a factor ≲1.5 of the Hα-based black hole mass from the same spectrum (MBH, Hα ∼ 1.93 × 109 M⊙) and is consistent with a previous estimate relying on the Mg IIλ2799 line (MBH, MgII ∼ 2.65 × 109 M⊙). All theseMBHestimates are within the ∼0.5 dex intrinsic scatter of the adopted mass calibrations. The high Eddington ratio of PJ308-21λEdd, Hβ ∼ 0.67 (λEdd, Hα ∼ 0.96) is in line with the overall quasar population atz ≳ 6. The relative strengths of the [O III], Fe II, and Hβlines are consistent with the empirical “Eigenvector 1” correlations as observed for low redshift quasars. We find evidence for blueshifted [O III]λ5007 emission with a velocity offset Δv[O III] = −1922 ± 39 km s−1from the systemic velocity and a full width at half maximum (FWHM)FWHM([O III]) = 2776−74+75km s−1. This may be the signature of outflowing gas from the nuclear region, despite the true values of Δv[O III]andFWHM([O III]) likely being more uncertain due to the blending with Hβand Fe IIlines. Our study demonstrates the unique capabilities of NIRSpec in capturing quasar spectra at cosmic dawn and studying their properties in unprecedented detail.more » « less